Ent?te

Logo du LIFL

Depuis le 1er janvier 2015 le LIFL et le LAGIS forment le laboratoire CRIStAL

  1. Doctoral studies

Thesis of

Calin Glitia

Monday 23 November 2009
Amphithéâtre de l'IRCICA

Optimisation des applications de traitement systématique intensives sur system-on-chip

Président : Nouredine Melab, Professeur LIFL
Directeur de thèse : Pierre Boulet, Professeur LIFL
Rapporteurs :
François Irigoin, Professeur École des Mines de Paris
Patrice Quinton, Professeur Université de Rennes 1
Examinateurs :
Michel Barreteau, THALES Research & Technology
Sven-Bodo Scholz, Maître de conf. Université de Hertfordshire

Les applications de traitement intensif de signal apparaissent dans de nombreux domaines d’applications tels que multimédia ou systèmes de détection. Ces applications gèrent les structures de données multidimensionnelles (principalement des tableaux) pour traiter les différentes dimensions des données (espace, temps, fréquence). Un langage de spécification permettant l’utilisation directe de ces différentes dimensions avec un haut niveau d’abstraction est une des clés de la manipulation de la complexité de ces applications et permet de bénéficier de leur parallélisme potentiel. Le langage de spécification Array-OL est conçu pour faire exactement cela.

Dans cette thèse, nous introduisons une extension d’Array-OL pour exprimer des dépendances cycliques par des dépendances interrépétitions uniformes. Nous montrons que ce langage de spécification est capable d’exprimer les principaux motifs de calcul du domaine de traitement de signal intensif. Nous discutons aussi de la modélisation répétitive des applications parallèles, des architectures répétitives et les placements uniformes des premières sur les secondes, en utilisant les concepts Array-OL intégrés dans le profil UML MARTE (Modeling and Analysis of Real-time and Embedded systems).

Des transformations de haut niveau data-parallèles sont disponibles pour adapter l’application à l’exécution, ce qui permet de choisir la granularité des flots et une simple expression du placement en étiquetant chaque répétition par son mode d’exécution : data parallèle ou séquentiel. L’ensemble des transformations a été revu, étendu et implémenté dans le cadre de l’environnement de comodélisation pour les systèmes embarqués, Gaspard2.

Avec l’introduction des dépendances uniformes, notre intérêt s’est tourné aussi sur l’interaction entre ces dépendances et les transformations de haut niveau. C’est essentiel, afin de permettre l’utilisation des outils de refactoring sur les modèles avec dépendances uniformes.

En utilisant les outils de refactoring de haut niveau, des stratégies et des heuristiques peuvent être conçues pour aider à l’exploration de l’espace de conception. Nous proposons une stratégie qui permet de trouver de bons compromis entre l’usage de stockage et de ressources de calcul, et dans l’exploitation de parallélisme (à la fois de tâches et de données), stratégie illustrée sur une application industrielle radar.

Ours