
Everything can be Agent!

(Extended Abstract)
Yoann Kubera
Université Lille 1,

59655 Villeneuve d’Ascq,
France

yoann.kubera@lifl.fr

Philippe Mathieu
Université Lille 1,

59655 Villeneuve d’Ascq,
France

philippe.mathieu@lifl.fr

Sébastien Picault
Université Lille 1,

59655 Villeneuve d’Ascq,
France

sebastien.picault@lifl.fr

ABSTRACT
Most Multi-Agent System designers use several notions –
like “agent”, “artifact”, “object”, etc. – to classify the en-
tities involved in simulations. These notions require differ-
ent methodologies, data structures and algorithms. In this
paper, we show that the representation of entities can be
favorably unified. As a consequence, the design and imple-
mentation process are made easier, since the designer has
no longer to assign a fixed type to each entity during model
construction. The implementation handles entities through
an unified data structure and algorithm, and is therefore
lightweight and more maintainable. Such an unification is
performed without efficiency loss in a concrete simulation
methodology called Ioda. According to common sense, we
propose to call such an unified entity simply “agent”!

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems; I.6.5 [Simulation and Mod-
eling]: Model Development—Modeling methodologies

General Terms
Algorithms, Design

Keywords
Simulation techniques, Software engineering

1. INTRODUCTION
Nowadays, MultiAgent Based Simulations (MABS) be-

came preponderant among computer simulation tools. The
origin of this trend comes from the notion of agent, which is
said close to the notion of entity in real phenomena.

Paradoxically, many different typologies are used to de-
sign the entities MABS involve. For instance, [1] makes the
difference between agents and objects, [4] makes the differ-
ence between agents and artifacts, [5] makes the difference
between agents and patches, etc. Each type relies on spe-
cific methodologies and data structures to identify entities
and on dedicated algorithms to implement them.

Cite as: Everything can be Agent! (Extended Abstract), Y. Kubera, P.
Mathieu and S. Picault, Proc. of 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2010), van der Hoek,
Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010, Toronto,
Canada, pp.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Even if using types provides some guidelines and represen-
tations for entities design, it also includes issues that make
simulation design harder. Indeed, identifying of the type of
an entity is not an easy and intuitive task, since types do not
match intuitive notions of real phenomena. Moreover, prior
types are incompatible with a gradual design process: refin-
ing the model might imply to change the types of entities,
which forces to re-implement all from scratch.

We uphold that these types are just an a priori way to
characterize the activity of an entity. Relying on a dynamic
characterization of entities activity, we propose in this paper
to achieve the same thing SmallTalk did with objects in
object oriented programming, or Prolog did with terms in
logic programming: to unify the representation of entities in
MABS, and use them in one single engine.

2. ENTITIES ACTIVITY
We state that the activity of entities in MABS can be

characterized by the presence of none, one, two or all of the
following abilities:

• activity: the entity can initiate actions;

• passivity: the entity can undergo actions;

• lability: the entity can change its state without acting
nor undergoing actions.

Most types used in MABS correspond only to a prior valua-
tion of these abilities. An artifact in [4] is a passive entity –
for instance a door used by an entity to go from a room to
another. An object in [1] is either a passive entity – see the
example above – or an entity without any of these abilities
– for instance a curtain that hides the entities behind it. An
agent in [1] and in [2] have not the same meaning: in [1]
it corresponds to an active and passive entity, and in [2] it
corresponds to an active, passive and labile entity.

Other types are used to differentiate some properties of
entities. For instance the only difference between turtles and
patches in Netlogo [5] lies in their physical representation in
the environment: a turtle is a point, and a patch is a square.
The use of a property to define the physical representation
of entities would have avoided the use of types.

If entities representation makes possible to dynamically
identify active, passive, and labile properties of entities, then
entities representation becomes unified, and a simulation can
run with an unified algorithm. For instance, in the case of
discrete time, simulations run with algorithm 1.

1547

1547-1548



Algorithm 1: Outline of the algorithms that define 1)
how agents are added in the environment, and 2) how
discrete time simulations run, if entities act in sequence.

Let Elab, Eact and Epas be sets of entities.
1) addEntity(e):
begin

Add e to the environment;
if if e is labile then

Elab ⇐ Elab ∪ {e};
if if e is active then

Eact ⇐ Eact ∪ {e};
if if e is passive then

Epas ⇐ Epas ∪ {e};
end
2) performSimulation():
begin

while simulation running do
% Updating labile entities
for e ∈ Elab do

update e;

Shuffle Eact;
% Asking active entities to act
for e ∈ Eact do

% Getting perceived passive entities
P ⊆ Epas ⇐ all entities perceived by e;
(I, T ∈ P) ⇐ I the action e chooses to do, and T
the entity that undergoes the action;
Perform I with e as source and T as target;

end

3. INTERACTION ORIENTED DESIGN OF
AGENT SIMULATIONS (IODA)

In [3], we proposed an interaction-oriented approach to
simulation design, called Ioda. It relies on an homogeneous
representation of actions performed by entities, called In-
teraction. In our work, an interaction is a semantic block
of actions involving simultaneously a fixed number of enti-
ties, which describes how and under what kind of conditions
entities may interact one with others. Difference is made
between source entities that initiate the interaction – i.e.
entities that choose to interact with their own action selec-
tion process – and target entities that undergo the interac-
tion – i.e. which are chosen by the action selection process
of source entities. The Interaction Matrix summarizes
which interactions an entity can initiate as a source with
another entity as target (see figure 1). An interaction is
possible between a source entity x and a target entity y only
if the interaction lies in the matrix at the intersection of the
line of x, and the column of y.

Interactions are made concrete as software elements, and
the interaction matrix is thus kept at implementation.
Therefore, entities activity can be characterized as follows:

• an active entity owns a not empty line in
the interaction matrix: x is active ⇔ ∃cell ∈
InteractionMatrix | cell ∈ line(x) ∧ cell �= ∅

• an passive entity owns a not empty column in
the interaction matrix: x is passive ⇔ ∃cell ∈
InteractionMatrix | cell ∈ column(x) ∧ cell �= ∅

Entities are able to update with a particular method – which
is empty in labile entities.

Consequently, Ioda makes possible to express, with an
unified representation, entities owning any combination of

���������Source
Target ∅ Grass Sheep Wolf

Sheep
Move

Eat Reproduce
Die

Wolf
Move

Eat Reproduce
Die

Figure 1: Interaction Matrix of a predator/prey sim-
ulation. Interactions involving no target entity – for
instance Move – are put in the ∅ column.

activity properties identified in the second section, and
makes possible to dynamically identify active and passive
properties. Thus, Ioda achieves the representation pre-
sented in the latter section, and unifies entities represen-
tation.

4. EFFICIENCY ISSUES
Using a dynamic evaluation of entities activity might be

less efficient than using types preprocessing. Moreover, Ioda
has no criterion to differentiate labile from not labile agents.
Thus, an efficiency loss can be expected. However, experi-
ments we led show that a simulation using Ioda is as efficient
as an ad-hoc algorithm to manage entities activity.

5. CONCLUSION
Most existing MABS design methodologies and frame-

works make a conceptual distinction between agents, arti-
facts, objects, etc. Entities are given a type, and are de-
signed – and implemented – with very different structures
and architectures. Finding out the type to design a particu-
lar entity is not always obvious for domain specialists, since
these types do not match intuitive notions of real phenomena
like “living being”, or “animated entity”. Moreover, types go
against the principle of incremental design of simulations.

In this paper, we show that types are only particular char-
acterization of entities activity. These properties can be dy-
namically identified so that types are not necessary to design
entities: their representation can be unified. Moreover, the
resulting implementation can be made efficient and simple.

Our methodology called Ioda [3] provides a representation
meeting these criterion. For agent-based simulations, we
propose to call such an unified entity “agent”. Consequently,
in simulations, everything can be Agent!

6. REFERENCES
[1] J. Ferber. Multi-Agent System: An Introduction to

Distributed Artificial Intelligence. Harlow: Addison
Wesley Longman, 1999.

[2] J. Ferber and J. Müller. Influences and reaction: a
model of situated multiagent systems. In Proceedings of
ICMAS’96, Kyoto, 1996.

[3] Y. Kubera, P. Mathieu, and S. Picault. Interaction
-oriented agent simulations : From theory to
implementation. In Proceedings of ECAI’08, pages
383–387, Athens, 2008.

[4] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the
A&A meta-model for multi-agent systems. Autonomous
Agents and Multi-Agent Systems, 17(3):432–456, 2008.

[5] U. Wilenski. Netlogo. http://ccl.northwestern.edu/
netlogo/, Center for Connected Learning and
Computer-Based Modeling, 1999.

1548


