A coalition formation based model for Web service composition

Mme SOUILAH BENABDELHAFID Maya
LIRE Laboratory, Mentouri University, Constantine

IWAISE’2012
1. Introduction (1/3)

Context and Motivation

- Service Oriented Computing (SOC) → Development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments
- Web Service (WS) → Concretization of SOC
- Web Service Composition (WSC) → Aggregation of several WSs to answer to needs that a single WS can not provide
- New WSC process based on the combination of WSs and software agents in order to have a better interoperability [Souilah and al., 11]
I. Introduction (2/3)

Problem

The service providers don’t have enough autonomy to choose their partners during the WSC process!!

- Very close to the coalition formation in the Multi Agent Systems where software agents can allow such autonomy
Objective

- Proposition of a negotiation model where the service providers can participate in the WSC process

- Considering criteria permitting the construction of a composed WS that answers at best to the service consumer needs
Outlines

1. Introduction

2. Some research works comparison

3. Proposed model

4. Does it work?

5. Conclusions

6. References
2. Comparison of some research works

<table>
<thead>
<tr>
<th>Research Works</th>
<th>Objective</th>
<th>Technology used in WSC</th>
<th>Provider-Provider negotiation</th>
<th>QoS negotiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ermolayev and al., 03]</td>
<td>Composition</td>
<td>Coalition formation</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[Maamar and al., 05]</td>
<td>Composition</td>
<td>Agent and context</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[Wang and al., 12]</td>
<td>Composition</td>
<td>Cooperative reasoning based agent</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[Zarour and al., 06]</td>
<td>Cooperation</td>
<td>/</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Our work</td>
<td>Interoperability</td>
<td>Coalition formation</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
3. Proposed model (1/8)

Hypotheses

- The consumer agent represents the service consumer
- The provider agent represents the service provider
- The service providers propose atomic services that will be discovered from a service registry

CFWSC (for Coalition Formation for Web Service Composition)

1. Negotiation of the service functionalities
2. Negotiation of the QoS

1 provider agent coalition member
1 needed service \(\rightarrow \) N discovered provider agents (P)
3 retained provider agents (RP)

Composed WS

November 10th, IWAISE'2012
3. Proposed model (2/8)

PHASE 1: NEGOTIATION OF THE SERVICE FUNCTIONALITIES

1. **Formulation and sending of the announcements by the consumer agent C**

 - **Announce(C, P)**
 - Expiry of the waiting period of responses

2. **Formulation and sending of the offers by the discovered provider agents P**

 - **Negotiate(P, C)**
 - **Negotiate-Propose(P, C)**
 - **Propose(P, C)**

3. **Evaluation of the discovered provider agents and selection of 3 retained agents R**

 - **Evaluate(R)**
 - **Retain(C, P)**
 - **Eliminate(C, P)**

4. **Negotiation and selection**

 - **Expiry of the waiting period of responses**
 - **Expiry of the reply time of P**

Message

- The QoS values +
- The maximum reply time value +
- (ev. the services wanting to negotiate on)

Announce message

- The needed services +
- The service to negotiate on +
- The current coalition members +
- The waiting period

Message

- The QoS values +
- The maximum reply time value +
- (ev. the services wanting to negotiate on)
What are the criteria that are used to evaluate the discovered provider agents?

- Criteria that are related to the partners [Cherni, 04]:
 - Previous relations with the partner
 - Experience in the cooperation

- The criteria will be aggregated by the coalition members in order to have a global estimation for each discovered provider agent that will be then classified [Zarour and al., 06]
3. Proposed model (4/8)

PHASE 2: NEGOTIATION OF THE QoS

November 10th, IWAISE'2012

- **a.** Accept one of the proposed offers, Accept (C, RP), and rejects the two remainder offers (Reject (C, RP))
- **b.** Propose three counter-offers Re-propose (C, RP)
 - **b.1** Accept the counter-offer Accept (RP, C)
 - **b.2** Reject the counter-offer Reject (RP, C)
 - **b.3** Generate a new offer then propose it Re-propose (RP, C)

Algorithm: Agents negotiation

Inputs: Retained agent offers O_R.

Outputs: A provider agent member of the coalition.

Begin

1. $t \leftarrow 0$
2. $O^t_R \leftarrow O_R$
3. Repeat
4. $t \leftarrow t+1$
5. The consumer agent offer computation at round $t(O^t_C)$
6. $O^t_R \leftarrow O^{t-1}_R$
7. Offers evaluation
8. Offers comparison
9. Generation and sending of responses
10. Until($t \geq temp$) or ($temp_1 = 0$ and $temp_2 = 0$ and $temp_3 = 0$) or ($O^t_R = \Phi$)
End
What are the QoS criteria that are considered in the negotiation?

- We consider the set C including the following QoS criteria:
 - Response time
 - Price
 - Availability
 - Robustness

Criteria qualified quantitatively
Criterion qualified qualitatively
3. Proposed model (6/8)

How about the offers evaluation?

<table>
<thead>
<tr>
<th>QoS Criteria</th>
<th>Response time</th>
<th>Price</th>
<th>Availability</th>
<th>Robustness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>[4, 12]</td>
<td>[0, 10]</td>
<td>[0.2, 0.7]</td>
<td>{weak, little-robust, robust}</td>
</tr>
<tr>
<td>Weigh</td>
<td>0.15</td>
<td>0.55</td>
<td>0.20</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Aggregation Function:

\[U^a = \sum_{c \in C} w_c \times V_c \]

Let be:

- \(U^C : for C \)
- \(U^1, U^2, U^3 : for RP \)
3. Proposed model (7/8)

Two cases are possible:

1. Choose the offer that generates the biggest utility value
2. Regenerate a new counter-offer in which it makes a concession (reduction of its utility value by changing its QoS values)

- \(U^1 \neq U^c \) and \(U^2 < U^c \) and \(U^3 < U^c \)
- \(U^1 = U^c \) or \(U^2 = U^c \) or \(U^3 = U^c \)

1) If it finds that there is an offer that has values that are the same or better than its own, then it accepts it
2) else, it regenerate a counter-offer in which it makes a concession
When does a negotiation process end?

- When all the discovered services will be allowed to providers that are now coalition members (coalition formation)
4. Does it work? (1/2)

Example: A service negotiation in a project of the construction

<table>
<thead>
<tr>
<th>Needed services</th>
<th>(Discovered Web Service, Provider agent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior decoration service</td>
<td>$(WS_1, P_1), (WS_2, P_2), (WS_3, P_3), (WS_4, P_4), (WS_5, P_5)$</td>
</tr>
<tr>
<td>Exterior decoration service</td>
<td>$(WS_6, P_6), (WS_7, P_5), (WS_8, P_8), (WS_9, P_1), (WS_{10}, P_{10}), (WS_{11}, P_{11})$</td>
</tr>
</tbody>
</table>
Does it work?

Simulation in JADE:

Several platforms are supplied as software packages such as Jade and Zeus.

Our choice is the Jade plateforme in which:

- WS are implemented as tasks
- Agents are implemented as Java classes

Two classes in the package CFWSC:

- CONSUMER
- PROVIDER

Extension of the basic Agent class included in jade.core.
5. Conclusions

• We have:
 ✓ Used a negotiation as a mechanism of interoperation.
 ✓ Materialized the agent negotiation by the CFWSC
 ✓ Studied a real case of interoperability domain
 ✓ Realized its simulation in jade platform

• Now, we are :
 ❑ Working on the second phase of the CFWSC (extension by other QoS criteria like security)

• As next step, we’ll:
 ➢ Formulize the CFWSC so that it’ll verify some properties such as the lack of blocking
7. References

Thanks for your attention, Questions?