
Push-and-Pull Switching: Window Switching based on
Window Overlapping

Quan Xu and Géry Casiez
LIFL & INRIA Lille

University of Lille, FRANCE
{quan.xu, gery.casiez}@lifl.fr

ABSTRACT
We propose Push-and-Pull Switching, a window switching
technique using window overlapping to implicitly define
groups. Push-and-Pull Switching enables switching between
groups and restacking the focused window to any position to
change its group membership. The technique was evaluated
in an experiment which found that Push-and-Pull Switching
improves switching performance by more than 50% com-
pared to other switching techniques in different scenarios.
A longitudinal user study indicates that participants invoked
this switching technique 15% of the time on single monitor
displays and that they found it easy to understand and use.

Author Keywords
Window management, window switching, overlapping.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User Inter-
faces. - Graphical user interfaces.

General Terms
Design, Performance.

INTRODUCTION AND PREVIOUS WORK
Window switching is one of the most frequent tasks of any
window manager and can occur several hundred times per
day (on average, once every 20.9s on large displays [2]).
Window switching includes two subtasks: first, finding the
window of interest, and second, bringing it to the fore-
ground. Unlike other operations on windows like moving
and resizing that do not vary much across window man-
agers, different techniques exist for window switching. The
most common techniques are direct pointing using a mouse
to click on a region of the window of interest, Alt+Tab /
Cmd+Tab which consists of a key combination to navigate
the list of windows or applications, taskbar/dock which pro-
vides a representation of the windows or applications at the
bottom of the display with icons and text, and Exposé which
tiles all opened windows so that they are visible at once.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2010, April 10 – 15, 2010, Atlanta, Georgia, USA
Copyright 2010 ACM 978-1-60558-929-9/10/04...$10.00.

These techniques allow one to directly select the window of
interest by clicking on the window itself or one of its rep-
resentations (direct pointing, Alt+Tab, taskbar and Exposé)
or first select a group of windows (Cmd+Tab and dock) and
then select the window of interest. For the two latter tech-
niques on Mac OS X, groups are defined by the windows
belonging to the same application. However according to
Robertson et al. grouping windows by application confuses
many users because application windows may not be related
to the same task [4]. Virtual desktops alleviate these prob-
lems by allowing users to explicitly define groups of win-
dows, but at the cost of a strict separation between them. In
contrast Scalable Fabric [4] allows interaction with windows
from multiple groups at once without affecting the group
structure. However the users have to plan in advance the
number of groups needed to accomplish their tasks, and add
each window to a group to leverage the benefit of the win-
dow grouping system. WindowScape [5] automatically cre-
ates groups by taking photograph-like snapshots each time a
window is expanded or miniaturized. However, when a user
wants to resume a group, it may no longer be visible or the
user may have to explicitly define favorite snapshots.

Our work builds upon the informal observation that users try
to keep windows belonging to the same activity visible by
trying to avoid or minimize the amount they overlap. As a
result groups are implicitly created by the user. This is also
supported by Hutchings and Stasko who showed that a sig-
nificant group of users tend to have many windows visible
simultaneously [3]. The following scenario illustrates such
a situation: Peter edits code using a text editor and uses a
terminal window to compile and test his program. The ter-
minal window is positioned to avoid occlusion of any line
of code displayed in the editor. He uses a third maximized
window to repeatedly search information on the Internet.

Switching back and forth between the group represented
by the editor and terminal windows and the Internet win-
dow is time consuming and error prone with direct point-
ing, Alt+Tab/Cmd+Tab, taskbar or Exposé techniques. Pe-
ter could use a virtual desktop to explicitly assign the web
browser window to one group, and the editor and terminal
windows to a second group. However, he does not want a
strict separation between these groups because he wants to
be able to read some information on the web browser win-
dow while editing his code. He could use Scalable Fabric
or WindowScape to display the two groups at once but he

CHI 2010: Interaction Techniques April 10–15, 2010, Atlanta, GA, USA

1335

Timeline
（a） （b） （c）

W3

Desktop

W1

W2

W5

W4

W7

Desktop

W1

W2

W7

Desktop

W1

W3

W5

W4

W3

W5

W4

W7

W2

（d）
Desktop

W1

W3

W5

W4

W7

W2W6 W6 W6W6

F

F
F

F

Figure 1. Push-and-Pull Switching example representing an initial lay-
out (a) with window W7 focused (represented by the letter F). Windows
are numbered according to their stacking order. Pressing the Ctrl key
computes the following groups: (W6, W7), (W3, W4, W5), (W2) and
(W1). Pushing one time the frontmost group moves all its windows
behind the ones from the second group while respecting the relative
stacking order within each group (b). Pushing one more time moves
the group behind the third one (c). Releasing the Ctrl key gives the
keyboard focus to the window with the highest Z order (d).

might not want to explicitly manage groups or use up more
display space required to operate these techniques.

To address these limitations, we designed Push-and-Pull
Switching, a switching technique based on window over-
lapping to implicitly define groups and help users quickly
switch between them. After giving an overview of the tech-
nique, we present an experiment comparing Push-and-Pull
Switching to other techniques in different scenarios. Finally
we present the results of a longitudinal user study.

PUSH-AND-PULL SWITCHING

Group Switching
When invoked, our algorithm first creates groups of non
overlapping windows automatically. Groups are created by
considering windows in decreasing Z order, from foreground
to background, and creating a new group each time a win-
dow overlaps with one of the windows of the current group.
This algorithm is similar to the stack leafing algorithm pro-
posed by Faure et al. [1] to facilitate drag-and-drop be-
tween overlapping windows. In addition, our algorithm uses
a configurable allowable overlap parameter when consider-
ing whether a window will be included in the current group
or not. The overlap for a given window is computed as the
percentage of pixels which are covered by the rest of the
group. Preliminary tests helped us to adjust the default over-
lap threshold to 15%.

Push-And-Pull Switching is invoked using keyboard short-
cuts or the mouse wheel. For keyboard shortcuts, we use
Ctrl+↑ to push a group and Ctrl+↓ to pull a group. Pressing
the Ctrl key and rotating the mouse wheel forward pushes
a group and rotating backward pulls a group. A press on
the Ctrl key initiates the above algorithm to create groups.
Pushing and pulling is accomplished by swapping all the
windows from one group to the other while preserving the
relative Z order within each group. Pulling a group brings all
windows within the group closer to the foreground. Pushing
a group does the opposite. During push and pull operations,
only the first group which was created (closer to foreground)
can be pushed or pulled (Figure 1). Once the Ctrl key is
released, the window with the highest Z order receives the

Timeline

W3

Desktop

W1

W2

（a） （b） （c）

W5

W4

W7
W3

Desktop

W1

W2

W7
W3

Desktop

W1
W5

W4
W2

W5

W4

W7

（d）

W3

Desktop

W1

W2

W5

W4

W7

W6 W6 W6 W6

F

F
F

F

Figure 2. Example for restacking the focused window. Figure (a) rep-
resents the initial layout in which window W7 is focused (represented
by the letter F) and where windows are numbered according to their
stacking order. Pressing Ctrl+Shift computes the following groups for
the windows intersecting window W7: (W4, W5), (W2), (W1). Pushing
one time moves window W7 behind the first group (b) and pushing one
more time moves it behind window W2 (c). Releasing the Crtl and Shift
keys gives keyboard focus to window W5 (d).

keyboard focus. We chose to give the keyboard focus to that
window since it was the last one accessed within that group,
so we consider the user more likely to interact with it.

Restacking the Focused Window
Push-and-Pull Switching can also be used to change the
Z order of the focused window. When invoked using the
Ctrl+Shift keys instead of Ctrl, our algorithm creates groups
by considering only the windows which intersect with the
focused window (if we considered all windows, pushing or
pulling operations would have no visible effect). Thus, push-
ing or pulling moves the window in front or behind the re-
lated group. Releasing Ctrl+Shift gives the keyboard fo-
cus to the window with the highest Z order in the frontmost
group (Figure 2).

Sending a window to the back of the Z order is a feature
proposed by some X window managers and Windows (us-
ing Alt+Esc keys). Note that no modern window manager
enables this type of precise setting of the Z order of a win-
dow. This technique can be used to add a window to an-
other group. It could also be used for restacking a window
back to its original position without modifying the Z order
of the other windows. A typical example is to restack an in-
stant messaging window after chatting and return to previous
work.

EXPERIMENTS
The Push-And-Pull Switching technique was implemented
in C# on Windows XP/Vista1. We wished to compare the
performance of Push-and-Pull Switching to other techniques
in different scenarios.

Experiment 1: Group Switching
We used a PC running Microsoft Windows XP using a 22
inch LCD monitor with a 1680 × 1050 resolution. The task
was to switch back and forth between windows presented in
different scenarios. Each trial started with an initial layout
(Figure 3). After pressing the space bar, the participant was
asked to switch to a specific layout, switch back to the initial
1http://code.google.com/p/
push-and-pull-switching

CHI 2010: Interaction Techniques April 10–15, 2010, Atlanta, GA, USA

1336

http://code.google.com/p/push-and-pull-switching
http://code.google.com/p/push-and-pull-switching

layout, and then press the space bar again to end the trial.
To help participants, the initial and target layouts for each
scenario were printed on a paper positioned under the screen.
Participants had to successfully reach the target layout and
successfully return to the initial one before moving to the
next trial. The experimenter warned the participants when a
wrong layout occurred but gave no indication how to correct
it.

8 people (5 male, 3 female) with a mean age of 27 (SD=2.2)
participated. They were recruited from the computer sci-
ence department and said they spent at least 8 hours a day
working on a Microsoft Windows system. Most participants
reported that they mainly use direct access and taskbar (with
the group by application option disabled) and three reported
that they often use Alt+Tab.

A repeated measure design was used. The independent vari-
ables were switching technique (SWT) with the three switch-
ing techniques available on Windows XP (Taskbar, Alt+Tab,
Direct pointing) and the Push-and-Pull Switching technique,
and SCENARIO with four levels. The first scenario consists
of switching back and forth between window W7 and win-
dow W8 in Figure 3a. In the second scenario, participants
were asked to switch back and forth between the group rep-
resented by windows (W7, W8) and window W6 in Fig-
ure 3b. The third scenario consists in switching back and
forth between the group represented by windows (W6, W7,
W8) and window W5 in Figure 3c. In the fourth scenario,
participants were asked to switch back and forth between
the groups represented by windows (W7, W8) and windows
(W5, W6) in Figure 3d. Each scenario consists of 8 win-
dows. Note that the scenarios were composed of real Win-
dows applications arranged in layouts corresponding to re-
alistic activities. For each application, we chose documents
that participants could easily distinguish.

Participants were asked to complete each scenario 10 times
with all four switching techniques before moving to the next
one. The scenarios were run from a to d but the techniques

Desktop
W1W4

W2

W2

Desktop
W1W2 W4

A

（c） （d）

W3

Desktop
W1

W4

W5

W2

Desktop
W1W2 W5

（a） （b）

W7

W6

W8

W4

W3

A

W5W7

W8

W6

W5W3

W7

W8

W6

W3
W6

W8W7

F

F

F

F

Figure 3. The initial layout for the four scenarios used in experiment 1
to compare the switching time between Taskbar, Alt+Tab, Direct point-
ing and Push-And-Pull Switching. The letter F represents the focused
window. Windows are numbered according to their stacking order.
Window numbers were replaced by real application windows in the
experiment.

were counter-balanced across participants using a balanced
Latin square. Before starting the experiment, participants
had a 5-10 minute training period to get used to the switching
techniques and windows content. Before each scenario, the
experimenter clearly explained which layouts the participant
had to switch between. The experiment lasted approximately
25 minutes.

Results
The dependent variable is switching time, the time measured
between two presses on the space bar. Repeated measures
analyses of variance showed a significant main effect for
SWT (F3,21=13.5, p<0.001) and SCENARIO (F3,21=28.6,
p<0.001) on switching time. More interestingly we also
found a significant interaction between SWT and SCENARIO
(F9,63=7.5, p<0.001). Pairwise comparisons found a signif-
icant difference between Taskbar and all other techniques
(p<0.02) for scenario a with Taskbar being 45% slower
on average. For scenario b, c and d we observed signifi-
cant differences (p<0.03) between Push-and-Pull Switching
and the other techniques although the difference is marginal
(p<0.08) with Direct pointing for scenarios c and d. On
average Push-and-Pull switching is 50% faster than Direct
pointing and Taskbar, and 70% faster than Alt+Tab for these
three scenarios.

During the experiment we observed that participants were
more error prone with Alt+Tab which can explain the more
lengthly switching time for this technique. In fact, partic-
ipants did not use the Shift key to move back in the win-
dow list when they missed the target window, and preferred
to iterate through the entire list instead. The error rate for
Alt+Tab is 5%, Taskbar 2%, Direct pointing 1% and Push-
and-Pull Switching 0%. Overall, participants had no prob-
lem understanding and using Push-and-Pull Switching.

0 

1 

2 

3 

4 

5 

6 

7 

a  b  c  d 

Sw
it
ch
in
g 
*
m
e 
(s
) 

Scenario 

Alt+Tab 

Direct poin:ng 

Taskbar 

Push‐and‐Pull 

Figure 4. Mean switching time for SWITCHING TECHNIQUE and SCE-
NARIO. Error bars represent 95% confidence interval.

In this experiment, we focused on Push-and-Pull Switching
performance in different scenarios where the implicit cre-
ation of groups based on window overlapping is realistic.
The results confirm that Push-and-Pull Switching can sig-
nificantly improve switching time compared to other tech-
niques when users switch between groups containing two or
more windows.

CHI 2010: Interaction Techniques April 10–15, 2010, Atlanta, GA, USA

1337

W3

Desktop
W1

W4

W5

W6

W2

W7

W3

Desktop
W1

W2

Timeline

W7

W4

W5

W6

（a）
（b）

F
F

Figure 5. Window layout used in the second experiment with the initial
layout on the left (a) and the target layout on the right (b). The letter F
represents the window in focus. Windows are numbered following their
stacking order. Window numbers were replaced by real application
windows in the experiment.

Experiment 2: Restacking the Focused Window
This second experiment was run after the first experiment
with the same participants and the same hardware configu-
ration. The task was to change the Z order of the focused
window represented in Figure 5a to create the layout repre-
sented in Figure 5b. As before, a trial started and finished by
pressing the space bar and participants had to successfully
create the target layout before moving to the next trial. The
task was repeated 10 times.

A repeated measure design was used. The independent vari-
ables were switching technique SWT with the three switch-
ing techniques available on Windows XP (Taskbar, Alt+Tab,
Direct pointing) and the Push-and-Pull Switching technique.
The techniques were counterbalanced across participants
and we used the same applications as in the first experiment.
The experiment lasted approximately 5 minutes.

Results
As before, the dependent variable is restacking time which is
the time measured between the two presses on the space bar.
Repeated measures analyses of variance showed a signifi-
cant main effect for SWT (F3,21=5.11, p=0.008) on restack-
ing time. Pairwise comparisons found significant differences
between Push-and-Pull (1.4s), Alt+Tab (3.0s) (p=0.026),
and Taskbar (2.4s) (all p<0.001). The difference observed
with Direct pointing (2.1s) is marginal (p=0.07). Push-and-
Pull switching reduces restacking time by 52% compared
to Alt+Tab and 40% compared to Taskbar. All participants
reported that they found Push-and-Pull switching to be the
most direct and intuitive technique and most commented
how the technique mimics the way in which people classify
files in piles of documents.

LONGITUDINAL USER STUDY
In order to understand how people actually use the Push-
And-Pull Switching technique, we performed a longitudinal
field study on a small number of participants over one week.

8 people (7 male, 1 female), aged between 24 and 31, par-
ticipated in the study. There were 1 civil engineer, 1 me-
chanic, 1 electronic engineer and 5 computer scientists. Half

of the participants used a single monitor and the other half
two monitors. Participants were instructed how to use the
Push-And-Pull Switching technique and were given an ex-
ecutable. After one week, participants were interviewed to
collect details and comments about how they utilized Push-
And-Pull Switching and whether they found it useful. In
addition, the application logged all switching operations and
the corresponding technique used.

Single monitor users had, on average, 5 windows opened
simultaneously on their desktop. They mainly used Di-
rect pointing (47%) and Taskbar (36%) wheras Alt+Tab was
used 2% of the time and Push-and-Pull Switching 15%.
Dual monitor users had, on average, 8 windows opened si-
multaneously on their desktop. They mainly used Direct
pointing (64%) and Taskbar (26%) while Alt+Tab was used
3% of the time and Push-and-Pull 7%. The restack of the fo-
cused window represented 10% of Push-and-Pull Switching
invocations.

Participants reported that they mainly use Push-and-Pull
Switching when they want to keep two or more windows
grouped. They also use the restack functionality as a re-
placement for Alt+Tab when they want to access a window
which they know is just behind another. Using a 5 point Lik-
ert scale, participants rated Push-and-Pull Switching as use-
ful (averaged response = 3.9) (1=disagree, 5=agree) and easy
to use (4.1). Half of the participants (mostly single monitor
users) reported that they reposition and resize windows more
frequently than usual to leverage full benefit from Push-and-
Pull Switching.

CONCLUSION
Push-and-Pull Switching provides a lightweight alternative
to other grouping techniques. We demonstrated with a longi-
tudinal user study and two formal experiments that the defi-
nition of groups based on windows overlapping constitutes a
valid approach and helps to drastically reduce switching time
compared to traditional switching techniques. Future work
includes adding visual feedback for novice users to help vi-
sualize groups by changing the color of the window borders
when windows are being moved.

ACKNOWLEDGEMENTS
We thank Nicolas Roussel for his wise comments on early
revisions of the paper and Daniel Vogel for proofreading.

REFERENCES
1. G. Faure, O. Chapuis, and N. Roussel. Power tools for copying and

moving: useful stuff for your desktop. In Proc. CHI ’09, pages
1675–1678, 2009.

2. D. R. Hutchings, G. Smith, B. Meyers, M. Czerwinski, and
G. Robertson. Display space usage and window management operation
comparisons between single monitor and multiple monitor users. In
Proc. AVI ’04, pages 32–39, 2004.

3. D. R. Hutchings and J. Stasko. Revisiting display space management:
understanding current practice to inform next-generation design. In GI
’04, pages 127–134, 2004.

4. G. Robertson, E. Horvitz, M. Czerwinski, P. Baudisch, D. R.
Hutchings, B. Meyers, D. Robbins, and G. Smith. Scalable fabric:
flexible task management. In Proc. AVI ’04, pages 85–89, 2004.

5. C. Tashman. Windowscape: a task oriented window manager. In Proc.
UIST ’06, pages 77–80, 2006.

CHI 2010: Interaction Techniques April 10–15, 2010, Atlanta, GA, USA

1338

	INTRODUCTION and Previous Work
	Push-and-Pull Switching
	Group Switching
	Restacking the Focused Window

	Experiments
	Experiment 1: Group Switching
	Results

	Experiment 2: Restacking the Focused Window
	Results

	Longitudinal User Study
	Conclusion
	Acknowledgements
	REFERENCES

