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RANDOMNESS, UNPREDICTABILITY AND
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THE IDENTIFICATION BY THE THEORY OF
RECURSIVITY OF THE MATHEMATICAL
NOTION OF RANDOM SEQUENCE
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1. ABSTRACT

The theory of recursivity which was initiated by Gédel, Church, Turing and
Post between 1930 and 1936 leads 30 years later to an absolute definition
of randomness that seems to fulfil the main objectives stated by von Miscs,
The definition of random sequences by Martin-L&f in 1965 and the other
works on the so-called ‘algorithmic theory of informalion’ by Kolmogorof,
Chaitin, Schnorr and Levin (among others) may be understood as the
formulation of a thesis similar to the Church-Turing's Thesis about the
notion of algorithmic calculability. Here is this new thesis we call the
Martin-Lof-Chaitins Thesis: the intuitive informal concept of random
sequences (of 0 and 1) is satisfactorily defined by the notion of Martin-Lif-
Chailin random sequences (MLC-random sequences) that is, sequences
which do not belong to any recursively null set. In this paper (a short
version of [Delahaye 1990]), we first recall and explain shortly the notion
of MLC-random sequences; and propose afterwards a comparison between
the Church-Turing's Thesis and the Martin-Lof-Chatin’s Thesis. Our
conclusion is that there is a huge similarity between the two thesis, but that
today the Martin-L6f-Chaitin’s Thesis is more problematic and more
complex than the Church-Turing’s Thesis.
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2. INTRODUCTION

In the context of the foundation of probability, the notion of random
sequences was introduced by Richard von Mises ([von Mises 1919], [von
Mises 1941], [von Mises 1964]) under the name of “collectives”
“).  Von Mises’ idea was that a mathematical theory of
ity should be based on a precise and absolute definition of
randomness. The crucial features of collectives are the existence of limiting
relative quumcleu within the sequence, and Lhu invariance of the limiting
relative under the ion of * selection’.

‘We claim that our theory, wh:ch serves to describe observable facts,
satisfies all f logical i and is free
from contradictions and obscurities of any kind. ... [ would even
claim that the rcal meaning of the Bernoulli theorem is inaccessble
to any probability theory that does not start with the frequency
definition of probability. ... All axioms of Kelmogarof can be
accepted within the framework of our theory as a part of &, but in no
‘way as a substitute for the foregoing definition of probability. R. von
Mises. On the Foundatians of Probability and Statistics. Ann. Math.
Statis. 12. 1941, pp. 191-205.

But unfortunately von Mises did not really arrive at a satisfactory notion of
‘admissible selection” and consequentially did not give a satisfactory
mathematical definition of what he calls "collective,” that is random
sequences.

The problem of giving an adequate mathematical definition of a
random sequence was subjected to an intense discussion about thirty
years 5go. It was initiated by von Mises as early as 1919 and
reached its climax in the thirties when it engaged most of the
pioncers of probability theory of that time. ... Von Mises urged that
a mathematica] theery of probability should be bused on a definition
of randomness, the probability of an event then being introduced as
the limit of the relative frequency as the number of trisls tends ta
infinity. ... It was objected that there is just as little need for a
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definition of randim sequences and probabilities by means of them
us there is need for a definion of points and straight lines in
geometry. ... The Juestion was not whether the theory in spe should
be axiomatized ornot, bt what objects should be taken as primitive
and what axioms should be chosea to govern them. In the
axiomatization of Kolmcgorof 1933 the random sequences arc left
cutside the theory. ... [Von Mises] wanted to definc random
sequences in an nbtnluu sense, sequences that were to possess all

le properties af . This program appears
impossible to carry out within the measure theoretic framework of
Kolmogorof 1933 ... [ seems as il it were this incapability of
finding an adequat mathematical definition that brought the so rapid
development in th: thirtis to sn abrupt end. ... A common feature
of the experimens considercd by ven Mises is that they may be
repeated any, or it leas a very large number of times. For the
sequence of the weeesiive oucOMes X, X, .., %, ... which is
imagined 1o extnd irdefinitely, von Mises coined the term
“Kollektiv". A Kellekiv has to satisfy two requirements. To
formulate the firstof these let n, denole the frequeney with which the
event A has ocewred in: he fist n trials, i.c. the number of points
i, 1 £ m = n,that belong 1o the subset A of the sample space.
For every “angebbare Punkirienge” A the limit of the relative
frequencies shoull exist, lim nyn=pi(A). This limit is called the
probability of the svent o with respect to the given Kollektiv. ... The
second axiom is more intricale. It is to cxpress the well-known
irregularity of a rmdom sequence, the impossibility of characterizing
the correspondence between the number of an experiment and its
sutcome by a maticmatical law. In a gamblers terminology it may
be called the axiom of the impossibility of a suceessful gambling
system, Thus scquences like (01 01010101010 ), 0
denoting failure and 1 success, are excluded although the limit
frequency exists, since befting at every even trial would assure us
constant suceess, The final form of the axiom is the following. 1f
we select & subseuence of X;, Xy, ..., X,, ... in such a way that the
decision whether s, should be selected or nat docs not depend on x,,
then the limiting relativs frequency cf the subsequence should exist
and equal that of the originsl sequence. .. The definition of &
Kollektiv was crificised for being mathematieally imprecise or even
inconsistent. ... The trouble was duc to the fact that the concept of
effectiveness was not & rigorous malhematical one at that time, P,
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Martin-Lf. The definition of Random Sequences. Informaiion and
Contral. 9. 1966. pages 602-619.

The axiomatic construction of probability theory on the
basis of mesurc theory [Kolmogorof 1936] as a purely mathematical
discipline is logically irreproachable and does not <ast doubls in
anybody’s mind. However to be able 1o apply this theory rigerously
in practice its physical interpretation has to be stated clearly.
Until recently there was no salisfactory solution of this poblem
Indeed, probability is usually interpreted by means of the following
arguments: “If we perform many tests, then the ratio of the number
of favourable outcomes to the number of tests performed will always
give a number close o, and in the limit exsetly equal 1o, the
probability (or measure) of the event in question. However to say
“always” here would be untrue:  strictly speaking, this does not
always happen, but only with probability 1 (and for finite scrics of
tests, with probability elose to 1). In this way the concept of the
probability of an arbitrary event is defined through the concept of an
event that has probability close to (and in the limil equal to) 1,
consequently cannot be defined in this manner withou: an obwiously
circular argument. In 1919 von Mises put forward the following way
of eliminating these difficulti ing to von Mises there are
random and d From the point of
view, random sequences form & set of full mesure and all without
exception satisfy all the laws of probability theory. L is physically
possible w assume that as a result of an experiment only random
sequences appear.  However, the definition of random sequences
proposed by von Miscs and later defined more precisely by Wald
[1937], Church [1940] and Kolmogorof [1963] wrmed ou: to be
unsatisfactory. For example, the existence was proved of random
sequences, according to von Mises (his so-called collectives) that do
not satisfy the law of ilerated logarithm [Ville 1939]. A. K. Zvonkin,
L. A. Levin. The Complexity of finite object and the development of
the concepis of information and randomness by means of the theory
of algorithms. Russ Maih. Survey, 25, 6, 1970 pages 83-124.
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3. THE NOTION OF MARTIN-LOF-CHAITIN RANDOM
SEQUENCE

In 1965 Kolmogorof [Kolmogorof 1965] has defned the complexity H(Y)
of an object Y as the minimsl length of he binary program which computes
¥ on & certsin Universal Turing Machine. He siows that this notion was
nvariant in he sense that if U and U” are twn Universal Machines then the
womplexity defined by the first is the sane as the ;omplexity defined by the
«econd within a constant. Similar work was done simultancously by Chaitin
[Chaitin 1966 1969a]. Kdmogorof on the basis of this definition has
proposed o consider those elements of a given lage finite population to be
andom whese complexity is maximal.

In 1966 Martin-L5f had shown that the random element as defined
by Kelmogaref possess all eonceivable itatistical sroperties of randomness.
He also extended the definition to infinde bimry sequences and for the first
ime gave a precise mathematical defintion of the von Mises” Kolectivs,

Several equivalent fommulations are possble, We give them here.
In the following we identify & real nunber in the interval [0, 1] with its
sequence of digits (hence instead of defining the notion of random infinite
sequence of 0 and 1, we define the nofion of random real).

he 4 following definitions are equivalat: ([Chaitin 1987b])
e real number rin the inferval [0, 1]is raadon if and only ift
Definirion 1 (random in the Martin-Lif sense, 1966)
For every recursively enwnerable sequence A, of sets of intervals,
every & with amesure less than T{p(A) <2Y: 1 does not belong 1o
evey A,
Definition 2 (random in the Solovay semse, 1975)
Foreveryrecursively enumerable sequence A of sets of intervals with

a finite total mesure (Cp(A)< oo): 1 i af mast a finite mumber af
A
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Definition 3 (random in the Chaitin-Levin sense)
The complexity Hix,) of the n first digits of © satisfies:
3cvn: Hirdzne
Definition 4 (strongly random in the Chaitin sense, 1987)
The complexity Hir,) of the n first digiis of r satisfies:
vkaNvn=N: H{r)=n+k
In a less formal manner, the situation of the question today is that:

For a sequence of binary digit, to be random is to verily one of the
equivalent propertics;

- nat o fulfil any excepiional regularity effectively testable (i.c. w
pass all the sequential effective random test [Martin-L&] 1966]i,

- 1o have an incompressible information content (i.c. to have a
maximal algorithmic complexity [Levin 1974] [Chaitin 1975a]),

- 10 be impredictable or impossible to win (no gambling system can
win when playing on the sequence) [Schnorr 1971a] [Schnorr 1977]).

and to be random implics:

- nat to have any algorithmic form (not to be definissable with an
algorithm as the sequence of the digits of 11 is)

- to have limiting relative frequencies for every sibseguence
extracted by an algorithm (effective property of von Mises-Church);

- to be free from aftereffect [Popper 1935] (weak ferm o‘:‘ the
property of von Mises-Church: the limiting relative frequencics da
not change for scquences extracted by the following process: a finite
sequence of O and 1 being fixed X, Xy .., %, extraci the
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subsequnce o’ clements which are jud after each accurrence of x,,
Rysvn )

For a more predse history and mathematical details the reader is referred
to [MartinLaf 196%b] [Zvonkin Levin 1970] [Schnorr 1977] [van
Lambalgen 1987] [Eolmogorol Uspenskii 1987] [Li Vitanyi 1989c]
[Delshaye |990][Li Vitanyi 1990],

4. COMPARISIN OF CHURCH-TURING'S THESIS AND
MARTIN-LOF-CHAITIN'S THESIS.

It seems intresting to compare the present situation of the Church-Turing's
Thesis (abcut th: notbn of "algorithmically calculable function™) and the
Martin-L&f-Chatin's Thesis (about the notion of "infinite binary random
sequence”),

It is mecessary to precise that we only want to consider the
“standard “hurh-Tuing’s Thesis® which identifies the mathematical
concept of -ecurrive function with the intwtive metamathematical concept
of function calculable with a discrete, deterministic, finite algorithm, Here
we do not zonsiler the physical Church-Turing’s Thesis (about functions
calculable sy machin:s or physical processes) nor the mental Church-
Turing’s Thesis (abow functions calculable by minds or brains).

The disussion about the Church-Turing’s Thesis is often obscured
by the confusion between the standard Church-Turing's Thesis which is
widely ace:pted and its variants which ere controversial. Analogous
confusion i posible tbout the Martin-L&f-Chaitin's Thesis which is only
for us the tatement of the identification of a mathematical notion with an
intuitive ard mitamahematical notion. We are nol concerned in our
discussion with the physical notion of chanc: or indeterminism, and we are
not concerred with the problam of the possibility of free choice by a mind
or a brain.

The Charch-Turing’s Thesis and the Martin-Laf-Chaitin’s Thesis
are not definitions. Really they are falsifiable and the proof of this is that
the Thesis of Pepper (which identifies random sequences with sequences
without aftereffect) is now falsified by the resulis of [Ville 1939].

N
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The Church-Turing’s Thesis and the Martin-L5{-Chaitin's Thesis
are really similar; each of them is a statement of identificaton of a
mathematical notion with an intuitive metamathematical one: th: fimt is
about the notion of algorithm, the second is about the notion of clance. It
is impossible to prove these theses because they are not mathematical
results, but our previous informal notions are sufficiently precise so that the
possibility of refutation still exists, and also that arguments may be given
in favour or against these theses.

‘We have made a classification of the arguments about Church-
Turing's Thesis and Martin-L5f-Chaitin’s Thesis and a comparison as
precise as possible.

(a) A by means of

(al) Arguments for the Church-Turing’s Thesis.

Usual functions as n -> 2n; n ->!; n -> n-th prime number ad many
athers, are calculable in the intuitive metamathematical sense, and it is sasy
o prove that they are recursive, hence the Church-Turing's Thesis is not
100 restrictive.

(a2) Arguments for the Martin-Lif-Chaitin's Thesis.

Sequences as (0000 ..) (010101 ..) and many others are non-
random in the intuitive metamathematical sense and it is easy to prove that
they are not MLC-random, hence the Martin-L5f-Chaitin’s Thesis & nd too
tolerant.

(a3) Comparison and remarks.
Arguments by means of examples tell us in the first case that the thesis is

mot too restrictive and in the second case that the thesis is not too tolerant.
‘With a complementation (i.e. seeing the Martin-L5f-Chaitin"s “hesis is
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about d the two are of equal strength.
These ergunents ae of mini i ions or
sequences for which we have a clear obvious intuitive judgment are
correctly clasified »y the mathematical notions.

Corcerning the Church-Turing’s Thesis the propused examples are
uﬁﬂn propos:d by infinite families (for example the family of polynomial

i bat alwiys families, and no non-denumerable
families of esamples can be given (for the entire set of recursive functions
18 denumersble !) About the Martin-Lof-Claitin’s Thesis some non-
denumerablesets ofnon-random sequences are easy Io propose (for example
the set of sequences verifying x,,=X,,,, for every n). Hence it may be said
that the Marin-LofChaitins Thesis is better supported by examples than
the Church-Turing’s Thesis.

It is clear ‘hat this type of arguments is not sufficient to reach a
definitive julgment about the theses in question, but their importance is
great and sone exanples have phyed an important role in the history of the

ition of randomn: ion of not satisfying
the law of iterated logarithm lm:l hence noa-rasdom (in the intuitive
‘metamathermtical sinse) by Vills is what have proved that the definition of
von Mises Church or of Popper had to be eliminated.

(b) Arguments by means of coanterexamples.

(b1) Argunents for the Church-Turing’s Thesis.

By diagonalization ve can obtamn functions whizh are not recursive and for
which we hwve no reason 1o believe that they are intuitively calculable.
This skows that th: Church-Turing’s Thesis s not too tolerant (and in
particular that the tiesis is not empty).
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(b2) Arguments for the Martin-Liif-Chaitin’s Thesis.

Using non-constructive arguments (about null set in measure theary), or
using more direct argument (definition of the number omega of Chaiin
[Chaitin 1987a] [Chaitin 1987b]) it can be proved that MLC-mndem
sequences exist. The Martin-Lif-Chaitin’s Thesis is not too restridive.

(b3) Comparison and remarks.

As about the argy by means of within a I

it seems that the arguments by means of counterexamples are equivalentin
strength with respect to Church-Turing's Thesis and Mactin-L&f-Chaitia’s
Thesis. But the methods used to obtain MLC-random sequences me mere
sophisticated than those used to oblain non-recursive finctions. Results
about the i ibility of random seq) show precisely thet every
MLC-random sequence is very hard to obtain: the first © bits of a random
sequence cannot be computed by a pmgram ur length less thann. So
random sequences much more than ions are

irreal, and so we can say that the Martin-] Lﬁf Chaitir's Thesis is lss
supported by counterexamples than the Church-Turing's Thesis.

(c) Arguments based on the intrinsic convincing strength of the
definitions.

(1) Arguments for the Church-Turing’s Thesis.

There are many definitions of the family of -ecursive fusctions. Each of
them is based on a mathematical formalization of an iaformal mtion of
algorithmically calculable function. So each of them gives more orlessthe
feeling that the idea of what is the intuitive notion of algoritimically
r.:]culabla function is captured in the mathematical defisition of rcursive

Whatever ical formalisstion you try for the mtior of
calculable function, it is now absolutely certain (in 1592) that rou will
obtain a definition easily provable equivalen: to the others.
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Hence the intrissic convincing strength of all until today tried
formalization of the notien of algoritimically eakulatle function is summed
in favour of the Church-Turing's Tlesis. Ther: are several hundred such
definitions, and their setis the mor: profound argumeni in favour of the
Church-Turing’s Thesis.

These definitiois are basel on modeisatins »f machines like
Turing’s machines or more comvlicated ores (Turing, Kolmogorof-
Uspinski, Markov, Gandy), on the tasis of considention about deductions
of values from systems of equations (Gidel, Kreisel-Tait), on formal
systems for arithmetic (GBdel, Tarski), on grammar production rules (Post,
Chomsky) and many others.

(e2) Arguments for the Martin-Lif-Chaitin’s Thesis.

About the Martin-L3f-Chaitin"s Thesis there are mairly 3 families of
definitions. The first based on the netion of effectiverancom tests (Martin-
Lof). The second based on algoritimic informatior theory (Kolmogorof,
Chaitin, Levin, Schnor). The third based o1 imprevisibility and
impossibility of winning gambler methods (Schnorr, Chaitin).

{c3) Comparison and remarks.

Each of the definitions of MLC-ranlom sequerces & interesting and gives
a somewhat convincing element, bat the chaoiic hitory of the notion of
random sequences is such that none of these definitons ilone is sufficient
to ensure us that we have handled tie good noion. It's the opposite with
the Church-Turing’s Thesis for which one well-chowen definition can give
a good definitive argument,

(di Arg of gence of the
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1) Arguments for the Church Turing’s Thesis.

Each definition of reeursive functions ia in itself an intesesting asgumant,
but the fact that all the definitions are cquivaleas is surprisiog and indirecily
comstilutes the most convincing argument in favour of e Church-Turing's
Thesis. Initially thers sy huve beon several motiuns uf algucitis. eve
an infinite number o notians of alysritm and na geod notions, The pros’
that all the attempts tn mike= definitinns gives us the sume class of fanctions
is & fust ordee argument and it is an arqument which likes the
salhcastician for it is 8 aoa tiviel one {ie. s besed oo a rea

mathematicul work).

(42} Arguments for the Martin-Luf-Chaitin’s Thesis,

The same thing holds for Mastin-Lo-Chsilin's Thesis, bot with less
strength,  For thers are less demonstrably equivalent definitinns of Lhe
nation of random sequences, and also for the formuluion of the good
definition was preceded by A long period in which many had thesis were
proposed. Hol now the coavergence scgumeat is important and it is the
very argument which was stressed in [Kolmogorel Uspenskit 1987)
Perbaps new definitions will he formulated which wil) prove sxrivient
e Wlartin-Lii"s definition,

(3) Cranparison and resarks,

Here we have & clear advantage in Fevour of the Church-Turing's Thesis
over the Meutin-Lof-Chaitin's Thesis for the first ane is supported by
several hundied equivaleat definitions, meanwhils the second oce has only
sviral syuivalent definitions and many non-equivaleat definitions,

Pleaze note that it 15 wromg o think thal the cumvergence: acpumecd
slon is 8 good aggument, Thare are alss many definitions of the s of
primilive recusive funetions foe of e class of the reonrsive scquances of
Dund 1), and thess definitions cannot be congidered as 3 good formalization
uf the motion of algorithmically valculshle functions for of the aotion of
uon-random scqueaces).
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{e} Arguments of robustncss.

(&) Argmments for the Church- Tering's Thests.

The fact that it is impssibli to diagmalize the class of recursive functicns
i whal wnvinced Kleoe in 1934 at the recently formulated proposition
ol Churh was cormect This mhusaiess +f the class of recursive fuetions
b manr olber sspecs. For cxangle I the variant sotivns of Turing
mschine: (machincs with several lapes, non delerministic machines,
rmuchine: with o beo-diminsiond wirk-space, %l of smullaneous
communating machires, eic.) givethe giod notin af recursive imetians.
Thix provves: that the notion af resunive fimctinn is an intrinsic one, hence
thit it is A0 mportantone, hence that it & presumably B ooc expeeted.

() Arguments. for Lie Martin L i -Chaitin’s Thesis,

The nntin of randam sequences reists il to small modifications in the

fomlatons of the definitions. Oue of the most remarkable is based ca

what Chutie calls the"comolaxity gp™ Lo defios randem axquences with

e comdtaun «H(x, ) 3-cx, 17 with the condition «11{x 10 tends tn infinites

is equivilens.  But there ace meny other examples of robusiness of 1c
finition of zandoun equences with regard ks the random lests used int b

s definitio,

ey Corparison wnd remarks.

o d roba bow tt rotinsol recursive
Tunction: and randim sequences are of Gk sume nature thut the number 11
wrthe fisdd of complas numiers: they are uhiquitaus mathematizal ohjects,
and consequently sre profound and imsortant ones.  Convergonce and
robnusticss are syupteas hat we are raght in identifying Uese notions with
thz intui ive metamathematizal netions we are interested in.
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Here there are anew more arguments of robustness in favour of the
Church-Turing’s Thesis than in favour of the Martin-L5f-Chaitin’s Thesis

About the questions of robustness it must be said that relatively &
the finite there is no robustness of the notion of recursive function or of the
notion of random sequence. Even if all the finite approximations f, of 2
function f (functions f, which are equal to f for every m = n) are recursivz
then the limit function f is not necessarily recursive. There is a similar
result for random sequences.

A of d ion, and of r to concurrent propositions.

{f1) Arguments for the Church-Turing’s Thesis,

No truly concurrent theses have been formulated for identifying the notica
of algorithmically calculable function. No truly good argument against the
(standard) Church-Turing's Thesis had been proposed. These 50 years of
success without real rival are a very strong argument in favour of the
Church-Turing’s Thesis. Perhaps every work on compuler science may te
considered as an indirect confirmation of it. Perhaps also the mathematicil
use of the Church-Turing’s Thesis in order to shorten the proof i
recursivility theory is an indirect argument, and certainly this shows the
confidence of mathematicians in the Church-Turing’s Thesis.

{f2) Arguments for the Martin-Liif-Chaitin’s Thesis.

The Martin-L&f-Chaitin’s Thesis is not attested by a similar long duration.
Between 1966 and 1976, before the equivalences had been proved relating
the definition in terms of effective statistical tests and the definition in terms
of algorithmic information theory, the Martin-Laf-Chaitin’s Thesis wis
uncertain. Some concurrent theses and in particular the proposition of
Schnorr ([Schnorr 1971a] [Schnorr 1977]) are not absolutely eliminated
today, they are only becoming less supported than the Martin-L&f-Chaitin’s
Thesis. The possibility of new mathematical results is always present, and
a new evolution of the subject is mot impossible. For example vin
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Lambalgen says that be is rcorvineed that a satisfactory treatment of
random sequences is jossibk oaly m set theory lacking the power set
axiom, in which andon sequences "wre not already there™s and that non
classical logic is the only way to o)tain a definitive solution [van Lambalgen
1987].

Today th: Martin-Lif-Chaitia’s Thesss is supported by near all the
specialists of the subect: Chaitin [Chaitin 1987b], Kolmogorof and
Uspenskii [Kolmcgorol Uspeaski 1947], Gacs [Gacs 1986, Schnorr (with
a slight restrictior [Schaorr 1977, Levin [Levin 1984].

(f3) Comparison and remarks.

The Martin-Léf-Chaitia's Thesis is dearly less supported by this type of
arguments than th: Church-Turing’s Thesis: itseems totally impossible that
a new thesis replices the ChurchTuring one, it seems unlikely that a new
thesis replaces Martin-Lf-Claitir’s one, but in each case the constructive
mathematics have certanly somehing to say.

() Ar of effectivity, frui and useful

(g1) Arguments for the ChurchTuring’s Thesis.

Mothing can be proved true by saying that it is effective, fruitful or useful,
but if a thesis is wninteesting, nat aplicable and does not give rise to new
ideas we can imaging that the thesis i false and that we shall never see its
falseness, Hence of effedivity, fmui and has
to be considered.

The Church-Turing's Thesis is effective (it enables simplification
of mathematical proof ind hence allows to go further in the development of
the theory of recursivity), fruiful (it gives a profound insight in our
conception of the world), wsefil (i computer science for example the
strength of progmmming language is studied and & first step is always to
prove that a language is algoritmially complete i.e. by using Church-
Turing's Thesis that al recursive furctions are programmable).
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(g2) Arguments for the Martin-Lif-Chaitin’s Thesis.

The Martin-L5f-Chaitin's Thesis is fruitful (see: [Chaitin Schwartz 1978]
[Li Vitanyi 1989]) but it is so ineffective (in part due to strong
incompleteness  Godel's that are related) that no concrete
utilization of MLC-random sequences is possible. This problem is what has
motivated new researches in the theory of pseudo-random sequences
[Goldreich 1988].

The usefulness of the Martin-L5f-Chaitin’s Thesis is alsc attested
by recent uses of the algorithmic information theory in physics [Bennett
1988] in biology [Chaitin 1979] in statistics [Rissanen 1986] and in
philosophy [Levin 1976a] [Levin 1984].

(g3) Comparisen and remarks.

About this type of arguments the comparison is anew in favour of Church-
Turing's Thesis, but we may see in a near future new developments and
new utilizations of the concept of MLC-Random sequences.

5. CONCLUSION

‘The two thesis are really similar, the Church-Turing’s Thesis offers a
mathematical identification of the intuitive informal conczpt of algorithm,
when the Martin-L5f-Chaitin's Thesis proposes an ideatificaticn of the
\nmlnve mfnﬂm] mmept nfmnd.oumns They are profound insights in the

ing of our universe. The first is
more deeply l:msled and it has the advantage that it was formulated 5C
years ago. The second one is more complicated (or seems so) and perhaps
in 25 years when it is 50 years old, it will reached to a certainty similar tc
the other.
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