du LABORATOIRE de CALCUL

de l’Université des Sciences et Techniques de

LILLE

Equivalences des continuités
des applications multivoques
dans des espaces topologiques

J.P. DELAHAYE
J. DENEL
EQUIVALENCES DES CONTINUITÉS DES APPLICATIONS
MULTIVOQUES DANS DES ESPACES TOPOLOGIQUES

J.P. DELAHAYE* - J. DENEL*

Abstract : Le but de ce rapport est de fournir au lecteur un résumé des principales définitions de continuité des applications multivoques. Les équivalences entre ces définitions sont étudiées dans des espaces topologiques généraux. Deux diagrammes résument ces propriétés et des contre-exemples montrent que les hypothèses proposées sont nécessaires.

* Service Informatique et Mathématiques Appliquées,
Université de Lille I, B.P. 36 - 59650 VILLENEUVE D'ASCQ.
INTRODUCTION

Depuis une dizaine d’années un grand nombre d’articles en mathématique appliquée abordent l’étude de la synthèse des algorithmes de programmation mathématique. L’outil mathématique habituellement utilisé dans ce contexte est la théorie des applications multivoques et les notions de continuité qui s’y rattachent.

Les origines de la notion de fonction multivoque et de la mesure de la continuité semblent être liées aux préoccupations des mathématiciens du début du siècle pour représenter les singularités de l’ensemble des solutions de problèmes de géométrie ou de mécanique. Ces préoccupations étaient essentiellement reliées à des familles d’ensembles de l’espace euclidien dépendant d’un paramètre réel de l’intervalle [0, 1].

À notre connaissance, c’est à Painlevé (cours de l’Ecole Normale Supérieure en 1902) que l’on doit la première représentation de la continuité d’une telle famille d’ensembles. Cette idée fut ensuite reprise et développée dans le même sens par Zoretti en 1905 et Janizewski en 1912.

C’est vers 1920-1930 qu’apparaît dans la littérature l’étude de fonctions multivoques plus générales faisant correspondre à un point d’un espace métrique une partie d’un autre espace métrique. C’est essentiellement par l’intermédiaire de définitions des limites d’ensembles (limite inférieure et limite supérieure) qu’ont été développé deux types de continuité très différents pour les applications multivoques. On peut, dans cette optique, citer Moore (1924-25), Wilson (1926), Hill (1927), Bouligand (1931, 1932, 1933), Kuratowski (1932), Blanc (1933).
Une autre approche, plus moderne, de cette théorie de la continuité des applications multivoques a été développée par Hahn (1921 et surtout son livre 1932). Dans son ouvrage, très peu cité, Hahn présente avec un point de vue topologique, deux types de continuité des fonctions multivoques et étudie de manière très complète les liaisons avec les définitions présentées en termes de limites d'ensembles. Ces travaux peuvent être considérés comme précurseurs de travaux plus modernes sur le sujet (Brisac (1947), Choquet (1948), Berge (1966)).

En premier lieu, ce rapport présente, dans un cadre topologique très général, un résumé synthétique des différentes approches développées dans la littérature sur les continuités des applications multivoques (à savoir la continuité inférieure et la continuité supérieure).

En second lieu, pour chaque type de continuité, on étudie les connexions existant entre les différentes définitions. Sous des hypothèses très générales, des équivalences sont démontrées. Deux diagrammes résument ces propriétés d'équivalences. Par une série de contre-exemples, on montre que les hypothèses utilisées pour ces équivalences sont toutes nécessaires.

Section I : Rappels sur les limites d'ensembles
II : Sur la continuité inférieure
III : Sur la continuité supérieure

Annexe : Rappels sur les Ordinaux ; Topologie sur les Ordinaux.
NOTATIONS ET CONVENTIONS

- $V(x)$ désignera l’ensemble des voisinages du point x

- $N' \subset \mathbb{N}$ sera toujours un sous-ensemble infini de \mathbb{N}

- $\{x_n\}_{n \in \mathbb{N}}$ désignera une suite de points et $\{x_n\}_{n \in N'}$, une suite extraite

- Tous les espaces topologiques considérés seront supposés séparés

- Dans les tableaux et dans certaines propositions nous utiliserons la notation suivante :
 $\begin{array}{c}
 (i), (ii), \ldots \\
 [A] \xrightarrow{\text{[A]}} [B]
 \end{array}$

 Cela signifie de façon précise que :

 . $A \Rightarrow B$

 Si les hypothèses notées $(i), (ii), \ldots$ sont vérifiées alors :

 $B \Rightarrow A$

 A chaque fois que nous utiliserons cette notation nous montrerons à l’aide de contre-exemples, qu’aucune des hypothèses $(i), (ii), \ldots$ ne peut être supprimée.

- Si A désigne une partie d’un espace topologique X, A sera supposée muni de la topologie induite par celle de X.
I - LIMITES D'ENSEMBLES (Hahn, Kuratowski)

On se donne une suite \(\{A_n\}_{n \in \mathbb{N}} \) de sous-ensembles de l'espace topologique \(X \).

I - 1 Limite inférieure

\[\liminf_{n \to \infty} A_n \text{ désigne la limite inférieure de la suite } \{A_n\}_{n \in \mathbb{N}} \text{ c'est-à-dire } \]

le sous-ensemble de \(X \) (éventuellement vide) dont les éléments sont les points \(x \) vérifiant :

\[\forall V \in \mathcal{V}(x), \exists n_0 : n \geq n_0 \Rightarrow A_n \cap V \neq \emptyset \]

I - 2 Limite supérieure

\[\limsup_{n \to \infty} A_n \text{ désigne la limite supérieure de la suite } \{A_n\}_{n \in \mathbb{N}} \text{ c'est-à-dire } \]

le sous-ensemble de \(X \) (éventuellement vide) dont les éléments sont les points \(x \) vérifiant :

\[\forall V \in \mathcal{V}(x), \forall n, \exists n' \geq n : A_{n'} \cap V \neq \emptyset \]

I - 3 Propriétés

Proposition I - 3 - 1

\[\lim_{n \to \infty} A_n \leq \limsup_{n \to \infty} A_n, \text{ et chacun de ces sous-ensembles de } X \text{ est fermé.} \]

Proposition I - 3 - 2

En notant (i) l'hypothèse suivante :

\[(i) \begin{cases} x \text{ admet un système fondamental dénombrable de} \\ \text{voisinages} \end{cases} \]

Alors :

\[x \in \limsup_{n \to \infty} A_n \iff \exists \{x_n\}_{n \in \mathbb{N}} \uparrow x, \exists n_0 : \forall n \geq n_0, x_n \in A_n \]

Proposition I - 3 - 3

(i) désignant la même hypothèse que dans la proposition précédente, on a :
\[x \in \lim_{N \to \infty} A_n \iff \exists N' \in \mathbb{N}, \exists \{x_n\}_{n \in N'} : \forall n \in N', x_n \in A_n \]

Proposition 1 - 3 - 4

Soit l'hypothèse :

(i) \(O \) est un ouvert de \(X \)

Alors :

\[\exists N' \in \mathbb{N} ; \forall n \in N', A_n \cap O = \emptyset \quad (i) \quad \lim_{N \to \infty} A_n \cap O = \emptyset \]

Proposition 1 - 3 - 5

Soit l'hypothèse :

(i) \(G \) est une partie de \(X \) qui est compacte ou séquentiellement compacte.

Alors :

\[(\lim_{N \to \infty} A_n) \cap G = \emptyset \quad (i) \quad \exists n_0 : \forall n \geq n_0, A_n \cap G = \emptyset \]

Proposition 1 - 3 - 6

Soit les hypothèses :

(i) \(X \) est un espace métrique à boules fermées compactes

(ii) \(G \) est une partie fermée de \(X \)

(iii) Pour tout \(n \), \(A_n \) est une partie connexe de \(X \)

(iv) \(\lim_{N \to \infty} A_n \neq \emptyset \)

(v) \(\lim_{N \to \infty} A_n \) est une partie compacte de \(X \)

Alors :

\[\forall n, A_n \cap G \neq \emptyset \quad (i),(ii),(iii),(iv),(v) \quad \lim_{N \to \infty} A_n \cap G \neq \emptyset \]

I - 4 Démonstrations

Démonstration de la proposition I - 3 - 1

- L'inclusion est évidente car pour \(V \in \mathcal{U}(x) \) donné :

 \[\exists n_0 \quad n \geq n_0 \Rightarrow A_n \cap V \neq \emptyset \]
entraine en particulier :

\[\forall n, \exists n' \geq n \Rightarrow A_n \cap V \neq \emptyset \]

- Pour montrer que \(\lim_{N} A_n \) est fermé, nous allons établir que :

\[\lim_{N} A_n \text{ est ouvert.} \]

Soit \(x \in \bigcap_{N} A_n \), par définition cela signifie :

\[\exists V \in \mathcal{V}(x) : \forall n_o \in \mathbb{N}, \exists n \in \mathbb{N} : n \geq n_o \text{ et } A_n \cap V = \emptyset \ (*) \]

Soit \(V' \) un voisinage ouvert de \(x \) contenu dans \(V \).

Soit \(x' \in V' \); on a \(V' \in \mathcal{V}(x') \) et donc d'après (*) :

\[\forall n_o \in \mathbb{N}, \exists n \in \mathbb{N} : n \geq n_o \text{ et } A_n \cap V' = \emptyset \]

On a donc établi que : \(x' \in \bigcap_{N} A_n \) pour tout \(x' \in V' \) et donc

\[\bigcap_{N} A_n \text{ est ouvert} \]

- Pour montrer que \(\lim_{N} A_n \) est fermé, on procède exactement de la même façon.

Démonstration de la proposition I - 3 - 2

- Pour montrer "+" donnons nous une suite \(\{x_n\}_{n \in \mathbb{N}} \) de points de \(X \) convergente vers \(x \) telle que :

\[\exists n_o : \forall n \geq n_o, x_n \in A_n \]

Soit \(V \in \mathcal{V}(x) \); puisque la suite converge vers \(x \),

\[\exists n_1 : \forall n \geq n_1, x_n \in V \]

Donc en prenant : \(n_2 = \max \{n_o, n_1\} \),

\[\exists n_2 : \forall n \geq n_2, x_n \in V \cap A_n \]

et donc :

\[\exists n_2 : \forall n \geq n_2, V \cap A_n \neq \emptyset \]

Ceci montre que : \(x \in \lim_{N} A_n \)

- Pour montrer "(4)" , donnons nous : \(x \in \lim_{N} A_n \) et \(\{V_i\}_{i \in \mathbb{N}} \) un système fondamental dénombrable de voisinages de \(x \). Il existe \(n_o \) tel que :

\[n \geq n_o \Rightarrow A_n \cap V_o \neq \emptyset \]
Et soit \(x_0, x_1, \ldots, x_{n_0 - 1}\) des points quelconques de \(X\).

On définit par récurrence la suite d'entiers \(n_1, n_2, \ldots, n_i, \ldots\) en posant :
\[
\begin{align*}
 n_{i+1} &> n_i \\
 n_{i+1} &\text{ est tel que : } n \geq n_{i+1} \Rightarrow A_n \cap V_{i+1} \neq \emptyset
\end{align*}
\]

Pour tout \(i \in \mathbb{N}\) et tout \(n \in \{n_i, n_i + 1, \ldots, n_{i+1} - 1\}\),
on a : \(A_n \cap V_i \neq \emptyset\)

On peut donc prendre un point : \(x_n \in A_n \cap V_i\).

La suite \(\{x_n\}_{n \in \mathbb{N}}\) que nous avons ainsi définie converge vers \(x\) et vérifie :
\[
\exists n_0 : \forall n \geq n_0, x_n \in A_n
\]
d'où le résultat.

Déémonstration de la proposition I - 3 - 3

- Pour montrer "+", donnons-nous un point \(x\), et \(N'\) tel que :
 \[
 \{x_n\}_{n \in N'} \to x \text{ et } \forall n \in N', \ x_n \in A_n
 \]
Soit alors \(V \in \mathcal{V}(x)\) ; d'après la convergence ;
\[
\exists n_0 \in \mathbb{N} : \forall n \in N', n \geq n_0 \Rightarrow x_n \in V
\]
et donc :
\[
\forall n \in \mathbb{N}, \exists n' \geq n : A_{n'} \cap V \neq \emptyset.
\]
Ceci montre que :
\[
\lim_{n \to \mathbb{N}} A_n
\]
- Pour montrer "(i)" nous un point \(x \in \suplim_{n \to \mathbb{N}} A_n\) et \([V_i]_{i \in \mathbb{N}}\) un
 système fondamental dénombrable de voisinages de \(x\).

On définit une suite d'entiers \(n_0, n_1, \ldots, n_i, \ldots\) et une suite de
points \(x_{n_0}, x_{n_1}, \ldots, x_{n_i}\) par récurrence de la façon suivante :

. On prend pour \(n_0\) un entier tel que \(A_{n_0} \cap V_0 \neq \emptyset\) (ce qui est possible
par définition de la limite supérieure) et on prend : \(x_{n_0} \in A_{n_0} \cap V_0\).

. Les entiers \(n_0, n_1, \ldots, n_i\) étant définis ainsi que les points
\(x_{n_0}, x_{n_1}, \ldots, x_{n_i}\) respectivement éléments de \(A_{n_0} \cap V_0, A_{n_1} \cap V_1, \ldots, A_{n_i} \cap V_i\);
on prend pour \(n_{i+1} \) un entier tel que \(n_{i+1} > n_i \) et \(\cap_{n_{i+1}} V_{i+1} \neq \emptyset \)

(ce qui est possible par définition de la limite supérieure) et on prend

\[x_{n_{i+1}} \in A_{n_{i+1}} \cap V_{i+1}. \]

Une sous-suite cherchée est alors définie par \(N^* = \{ n_0, n_1, \ldots, n_i, \ldots \} \)

Démonstration de la proposition I - 3 - 4

Soit \(O \) un ouvert de \(Y \).

Supposons que : \(\lim_{N} A_n \cap O \neq \emptyset \)

Soit \(y \in \lim_{N} A_n \cap O \)

Puisque \(O \) est ouvert, \(0 \in V(y) \) donc :

\[\exists n_o : \forall n \geq n_o, A_n \cap O \neq \emptyset \]

ce qui est exactement la négation de :

\[\forall n_o \exists n \geq n_o A_n \cap O = \emptyset \]

proposition équivalente à :

\[\exists N' \in \mathbb{N} \forall n \in N' A_n \cap O = \emptyset. \]

Démonstration de la proposition I - 3 - 5

Supposons \(G \) compact (resp. séquentiellement compact) et démontrons

(ce qui établira le résultat voulu) que :

\[\forall n_o, \exists n \geq n_o : A_n \cap G \neq \emptyset \Rightarrow \lim_{N} A_n \cap G \neq \emptyset \]

Pour cela, nous supposerons que :

\[\forall n_o, \exists n \geq n_o : A_n \cap G \neq \emptyset \]

Ce qui nous donne en particulier l'existence de \(N' \in \mathbb{N} \) tel que :

\[n' \in N' \Rightarrow A_{n'} \cap G \neq \emptyset \]

On peut donc construire une suite \(\{ x_{n'} \}_{n'} \) telle que :

\[n' \in N' \Rightarrow x_{n'} \in A_{n'} \cap G. \]

La suite \(\{ x_{n'} \}_{n'} \) admet un point d'accumulation \(x \) car toute suite de points d'un espace compact (resp. séquentiellement compact) admet un point d'accumulation.
Montrons que : \(x \in \lim_{n \to \infty} A_n \cap G \) ce qui terminera la démonstration.

Seul : \(x \in \lim_{n \to \infty} A_n \), n'est pas évident, pour l'établir soit \(V \in \mathcal{V}(x) \);

par définition d'un point d'accumulation

\[\forall n' \in \mathbb{N}, \exists n'' : n'' \geq n' : x_{n''} \in V, \]

\[n'' \in N' \]

Donc :

\[\forall n \in \mathbb{N}, \exists n'' \geq n : A_{n''} \cap V \neq \emptyset \]

Ce qui, aux notations près, signifie exactement que:

\[x \in \lim_{n \to \infty} A_n . \]

Démonstration de la proposition I - 3 - 6

Soit donc donnée une suite d'ensembles \(A_n \) tels que :

- \(A_n \cap G \neq \emptyset \) \(\forall n \)
- "\(A_n \) connexe de \(X^n \) \(\forall n \)
- \(\lim_{n \to \infty} A_n \) \(\neq \emptyset \) et compact

Soit \(\hat{x} \in \lim_{n \to \infty} A_n \) et \(\{x_{n'}\}_{n'} \to \hat{x} \) tels que :

\[n' \in N' \Rightarrow x_{n'} \in A_{n'} . \]

Une telle suite existe d'après la proposition I - 3 - 3).

Soit maintenant, pour tout \(n : y_n \in A_n \cap G \).

Nous allons montrer que :

\[\{y_{n'}\}_{n'} \text{ est bornée.} \quad (\star) \]

Pour cela nous supposons le contraire, il existe donc \(N'' \in N' \), \(N'' \) infini,
tel que :

\[d(\hat{x}, y_{n''}) \rightarrow +\infty \]

\[n'' \in N'' \]

Soit maintenant \(R \in \mathbb{R}^+ \), fixé tel que la boule ouverte \(\mathcal{B}(\hat{x}, R - 1) \) de
centre \(\hat{x} \) et de rayon \(R - 1 \), contienne

- tous les points de la suite \(\{x_{n'}\}_{n'} \),
- tous les points de l'ensemble \(\lim_{n \to \infty} A_n \)

(Un tel R existe car ici : compact \Rightarrow borné).

Par hypothèse, il existe $n_0 \in N'$, tel que :

$$\forall n'' \in N'', n'' \geq n_0 \Rightarrow y_{n''} \notin \overline{B}(x, R)$$

Notons : $N'' = \{ n \in N'' \mid n \geq n_0 \}$.

Soit $n \in N''$, on a

$$\left\{ \begin{array}{l}
x_n \in B(x, R) \cap A_n \\
y_n \in \bigcap \overline{B}(x, R) \cap A_n
\end{array} \right.$$

Puisque A_n est connexe, il existe un point $t_n \in A_n$, tel que : $d(x, t_n) = R$

(en effet si t_n n'existait pas, $B(x, R) \cap A_n$ et $\bigcap \overline{B}(x, R) \cap A_n$ formeraient une partition de A_n en deux ouverts relatifs non vides).

L'ensemble $\{ x \in X \mid d(x, x) = R \}$ est un compact il existe donc :

$N'(4) < N''$, $N'(4)$ infini, tel que $t_n \in N'(4)$ converge vers $t \in \lim A_n$

(car pour tout $n \in N'(4)$, $t_n \in A_n$).

On a : $d(t, x) = R$ ce qui est en contradiction avec la définition de R.

L'affirmation (*) est donc démontrée.

La suite $(y_n)'_N$, étant bornée, admet au moins un point d'accumulation γ,

dont on vérifie, comme pour t, qu'il appartient à $\lim A_n$.

Comme de plus : $y_n \in G$, on a aussi que : $y \in G$, ce qui termine la démonstration.

I - 4 Contre-exemples

Proposition I - 3 - 2 : Suppression de l'hypothèse (i)

Prenons $X = Z$ (voir annexe)

$$A_n = Z_0 \text{ pour tout } n$$

$x = N_1$

On a bien : $x = \lim A_n$ car :

$$\lim A_n = \lim A_n = A_n = Z$$

et pourtant il ne peut exister de suite $(x_n) + x$ telle que :

$\exists n_0 \forall n \geq n_0 \ x_n \in A_n$, car toute suite convergente vers x est stationnaire

à partir d'un certain rang ce qui est impossible puisque $x \notin A_n$.
Proposition I - 3 - 4 ; Suppression de l'hypothèse (i)

On prend X, A_n, x comme dans le contre-exemple précédent.

On a bien $x \in \lim_{N} A_n = \bar{A}_n = Z$

Et pourtant il ne peut exister $N' \in \mathbb{N}$ et $\{ \frac{1}{n} \}_{n \in N'} \rightarrow x$ tels que :

$n \in N' \Rightarrow \frac{1}{n} \in A_n$, car Z_o est séquentiellement fermé et $x \notin Z_o$.

Proposition I - 3 - 4 ; Suppression de l'hypothèse (i)

On prend $X = \mathbb{R}$ (muni de la topologie usuelle)

$$ 0 = [-1, 0] $$

$$ \forall n \in \mathbb{N}, A_n =]0, 1[$$

On a alors : $\lim_{N} A_n = [0, 1]$ et

$$ \forall n \in \mathbb{N}, A_n \cap 0 = \emptyset $$

et pourtant $\lim_{N} A_n \cap 0 \neq \emptyset$

Proposition I - 3 - 5 ; Suppression de l'hypothèse (i)

On prend, $X = \mathbb{R} = G$ et pour tout n, $A_n = \{n\}$

Proposition I - 3 - 6 ; Suppression de l'hypothèse (i)

On prend $X = \mathbb{R}^2$ - $\{(0, -1), (0, +1)\}$

$\{(0, -1), (0, +1)\}$ désigne le segment de \mathbb{R}^2 d'extrémités les points

$(0, -1)$ et $(0, +1))$

$$ G = \{(x, y) \in X \mid y = 0\} $$

$\forall n, A_n = [(1/n, -1), (1/n, +1)]$ qui est connexe.

On a : $\lim_{N} A_n = \{(0, -1)\}$ qui est non vide et compact.

On a : $A_n \cap G = \{(1/n, 0)\} \neq \emptyset$

et pourtant : $\lim_{N} A_n \cap G = \emptyset$

Proposition I - 3 - 6 ; Suppression de l'hypothèse (ii)

On prend $X = \mathbb{R}, G =]0, 1[,$ et pour tout n, $A_n = [0, 1/n]$.
Proposition I - 3 - 6 ; Suppression de l'hypothèse (iii)

On prend $X = \mathbb{R}^2$, $G = \{(x, y) \in \mathbb{R}^2 \mid y = 0\}$, pour tout n

$A_n = \{(n, 0), (0, 1)\}$.

On a : $\lim_{n \to \infty} A_n = \{(0, 1)\} \neq \emptyset$ et compact

$A_n \cap G = \{(n, 0)\} \neq \emptyset$

et pourtant : $\lim_{n \to \infty} A_n \cap G = \emptyset$

Proposition I - 3 - 6 ; Suppression de l'hypothèse (iv)

On prend $X = \mathbb{R} = G$ et pour tout $n : A_n = \{n\}$

Proposition I - 3 - 6 ; Suppression de l'hypothèse (v)

$X = \mathbb{R}^2$, $A_n = \{(x, y) \mid y = \frac{1}{n} x\}$

$G = \{(x, y) \in \mathbb{R}^2 \mid y = 1\}$
II - PREMIER TYPE DE CONTINUITÉ : LA CONTINUITÉ INFÉRIEURE

Dans tout ce paragraphe ainsi que dans le suivant, nous nous donnons une application multivoque F de l'espace topologique X dans $P(Y)$ (l'ensemble des parties de l'espace topologique Y).

II - 1 Définitions

Rappelons les quatre définitions suivantes déjà introduites dans la littérature.

Définition II - 1 - 1 (Hill, Kuratowski, Hahn, Blanc)

L'application F est dite semi-continue inférieurement par inclusion au point x si et seulement si :

$$\forall \{x_n\}_{n \in \mathbb{N}} + x, \ F(x) \subseteq \lim \limits_{n \to \infty} F(x_n)$$

Définition II - 1 - 2 (Hahn, Choquet, Berge)

L'application F est dite semi-continue inférieurement au point x si et seulement si :

$$\forall 0 \subset Y, \text{ ouvert, } F(x) \cap 0 \neq \emptyset \Rightarrow \exists \ V \in V(x) : \forall x' \in V, \ F(x') \cap 0 \neq \emptyset$$

Définition II - 1 - 3 (Debreu, Hogan, Huard, ...)

L'application F est dite inf-continue au point x si et seulement si :

$$\forall \{x_n\}_{n \in \mathbb{N}} + x \quad \exists \ y_0 \in F(x) \quad \exists \ n_0, \ y_n \in F(x_n)$$

Définition II - 1 - 4 (Brisac)

L'application F est dite semi-continue inférieurement au point x, si et seulement si :

$$F(x) = \{ y \in Y \mid \forall V \in V(y), \{x' \in X \mid F(x') \cap V \neq \emptyset \} \in V(x) \}$$

où $F(x)$ désigne l'adhérence de $F(x)$.
II - 2 Propriétés d'équivalence

Proposition II - 2 - 1

En considérant les hypothèses suivantes :

(i) Y vérifie le premier axiome de dénombrabilité (c'est-à-dire : tout point $y \in Y$ admet un système fondamental dénombrable de voisinages).

(ii) Le point $x \in X$ admet un système fondamental dénombrable de voisinages.

On a le tableau

![Diagramme](image_url)

Tableau I
Remarque

Les quatre propriétés de continuité inférieure sont équivalentes si X et Y
 vérifient le premier axiome de dénombrabilité et donc en particulier si
X et Y sont métriques.
L'application F est dite s.c.i. sur X, si elle est semi-continue
inférieurement en tout point $x \in X$.

Proposition II - 2 - 2 (Berge, Choquet)

F est s.c.i. sur X si et seulement si :

$$\{ x \in X \mid F(x) \cap O \neq \emptyset \}$$

est ouvert dans X, pour tout ouvert O de Y.

II - 3 Démonstrations

Démonstration de la proposition II - 2 - 1

(i)

S.C.I. en $x \implies$ i.c. en x

Soit F supposée S.C.I. en x. Soit $\{x_n\}_{n \in \mathbb{N}}$ et soit $y \in F(x)$.

On a : $F(x) = \lim_{N} F(x_N)$; donc : $y \in \lim_{N} F(x_N)$; d'après la proposition I-3-2

il existe $\{y_n\}_{n \in \mathbb{N}} \rightarrow y$ et n_0 tels que :

$$n \geq n_0 \implies y_n \in F(x_n)$$

Donc F est i.c. en x.

(ii)

i.c. en $x \implies$ S.C.I. en x

Soit F supposée i.c. en x. Soit $\{x_n\}_{n \in \mathbb{N}} \rightarrow x$ et soit $y \in F(x)$ nous devons
montrer que $y \in \lim_{N} F(x_n)$. Mais ceci est évident car :

$$\exists \{y_n\}_{n \in \mathbb{N}} \rightarrow y \exists n_0 \in \mathbb{N} : n \geq n_0 \implies y_n \in F(x_n).$$

S.C.I. en $x \implies$ s.c.i. en x

Soit F supposée S.C.I. en x, si F n'est pas s.c.i. en x par définition
cela signifie qu'il existe O un ouvert de Y tel que $F(x) \cap O \neq \emptyset$ et tel
que :

$$\forall U \ni V(x) \exists x' \in U \ F(x') \cap O = \emptyset \quad (*)$$
Donnons nous \(\{V_n\} \) un système fondamental dénombrable de voisinages de \(x \).

On construit grâce à (1) une suite \(\{x_n\} \) de \(x \) telle que :

\[
F(x_n) \cap \emptyset = \emptyset \text{ et } x_n \in V_n.
\]

Ceci comme nous l'avons vu (proposition I-3-4) permet de conclure que :

\[
\lim_{N \to \infty} F(x_n) \cap \emptyset = \emptyset,
\]

et donc que :

\[
F(x) \cap \emptyset = \emptyset,
\]

ce qui est une contradiction.

\textit{s.c.i. en } \mathbf{x + S.C.I. en x}

Soit \(F \) supposée s.c.i. en \(x \). Soit \(\{x_n\} \to x \) et soit \(y \in F(x) \). Nous devons établir que : \(y \in \lim_{N \to \infty} F(x_n) \). Pour cela, donnons nous \(V \) un voisinage de \(y \). Soit \(\emptyset \) un voisinage ouvert de \(y \) contenu dans \(V \). On a :

\[
\emptyset \cap F(x) \neq \emptyset,
\]

donc :

\[
\exists U \in V(x) \forall x' \in U \quad F(x') \cap \emptyset \neq \emptyset,
\]

et donc par définition de la convergence d'une suite,

\[
\exists n_0 : \forall n \geq n_0, F(x_n) \cap \emptyset \neq \emptyset.
\]

Ce qui, puisque : \(\emptyset \subset V \), donne :

\[
\exists n_0 : \forall n \geq n_0, F(x_n) \cap V \neq \emptyset
\]

et donc : \(y \in \lim_{N \to \infty} F(x_n) \).

Avant de continuer, introduisons les notations suivantes :

A étant une partie de \(Y \), on pose :

\[
F^{-}(A) = \{ x \in X \mid F(x) \cap A \neq \emptyset \}
\]

On a de façon évidente :

1) \(A \subset B \implies F^{-}(A) \subset F^{-}(B) \)

2) \(F \) est s.c.i. en \(x \) \iff \[
\left\{ \begin{array}{l}
\forall \emptyset \subset Y \text{ \(\emptyset \) ouvert tel que } F(x) \cap \emptyset \neq \emptyset \\
F^{-}(\emptyset) \in V(x)
\end{array} \right.
\]

3) \(F \) est \(\overline{\text{s.c.i.}} \) en \(x \) \iff \[
\overline{F(x)} = \{ y \in Y \mid \forall V \subset V(y) ; F^{-}(V) \in V(x) \}
\]
s.c.i. en x → s.c.i. en x

Soit F supposée s.c.i. en x.

a) Soit \(y \in \overline{F(x)} \), montrons que \(y \in \{ y \in Y \mid \forall V \in V(y) ; F^{-}(V) \in V(x) \} \).

Pour cela, donnons nous \(V \in V(y) \). Soit \(O \in V(y) \) tel que \(O \subset V \) et \(O \) ouvert. On a : \(y \in O \cap F(x) \) donc par hypothèse \(F^{-}(O) \in V(x) \) et donc grâce à 1) : \(F^{-}(V) \in V(x) \).

b) Soit \(y \in \{ y \in Y \mid \forall V \in V(y) ; F^{-}(V) \in V(x) \} \). Soit \(V \in V(y) \) nous voulons établir que : \(y \in \overline{F(x)} \), c'est-à-dire que : \(F(x) \cap V \neq \emptyset \). Mais cela est évident car : \(F^{-}(V) \in V(x) \) donc : \(x \in F^{-}(V) \) ce qui signifie justement que : \(F(x) \cap V \neq \emptyset \).

a) et b) établissent l'égalité d'ensembles :

\[\overline{F(x)} = \{ y \in Y \mid \forall V \in V(y) ; F^{-}(V) \in V(x) \} \]

s.c.i. en x → s.c.i. en x

Soit F supposée s.c.i. en x.

Soit \(O \) un ouvert tel que \(F(x) \cap O \neq \emptyset \). Nous devons établir que \(F^{-}(O) \in V(x) \).

Pour cela, donnons nous \(y \in F(x) \cap O \) on a \(y \in \overline{F(x)} \) donc :

\[\forall V \in V(y) ; F^{-}(V) \in V(x) ; \text{ mais } O \in V(y) ; \text{ donc } F^{-}(O) \in V(x) \].

Les six implications que nous venons de démontrer permettent de reconstituer le tableau I.

Démonstration de la proposition II - 2 - 2

a) F s.c.i. sur X + pour tout ouvert \(O \), \(F^{-}(O) \) est ouvert.

Soit F supposée s.c.i. sur X. Soit \(O \) un ouvert.

Soit : \(x \in F^{-}(O) \) cela signifie que : \(F(x) \cap O \neq \emptyset \) d'après 2) cela donne que : \(F^{-}(O) \in V(x) \). Ceci montre que \(F^{-}(O) \) est un voisinage de chacun de ses points et donc que \(F^{-}(O) \) est ouvert.
b) Pour tout ouvert \(O \), \(F^-(O) \) est ouvert \(+ \) s.c.i. sur \(X \).

Supposons que : pour tout ouvert \(O \), \(F^-(O) \) est ouvert.

Soit \(x \in X \), montrons que \(F \) est s.c.i. en \(x \).

Soit \(O \) un ouvert tel que : \(F(x) \cap O \neq \emptyset \), c'est-à-dire tel que :
\(x \in F^-(O) \). Puisque \(F^-(O) \) est ouvert \(F^-(O) \in \mathcal{V}(x) \), ce que nous voulions établir.

II - 3 Contre-exemples

(ii)

1) S.C.I. en \(x \longrightarrow \) s.c.i. en \(x \); Suppression de l'hypothèse (ii)

\(X = \mathbb{R}, x = \mathbb{N}_1 \), \(Y = \{0, 1\} \) (topologie discrète).

\(F(\mathbb{V}) = \{0\} \) si \(\mathbb{V} \neq \mathbb{N}_1 \)

\(F(\mathbb{N}_1) = \{0, 1\} \)

\(F \) est S.C.I. en \(x \) car les suites convergentes vers \(\mathbb{N}_1 \) sont constantes à partir d'un certain rang.

\(F \) n'est pas s.c.i. en \(x \) ; on prend \(O = \{1\} \) pour le voir.

(ii)

2) S.C.I. en \(x \longrightarrow \) s.c.i. en \(x \); Suppression de l'hypothèse (ii)

Même chose que 1) \(F \) n'est pas s.c.i. en \(x \) car sinon \(F \) serait s.c.i. en \(x \).

(ii)

3) i.c. en \(x \longrightarrow \) s.c.i. en \(x \); Suppression de l'hypothèse (ii)

Même chose que 1) \(F \) est i.c. en \(x \) car \(Y \) vérifie (i).

(ii)

4) i.c. en \(x \longrightarrow \) s.c.i. en \(x \); Suppression de l'hypothèse (ii)

Même chose que 1) \(F \) est i.c. en \(x \) car \(Y \) vérifie (i)

\(F \) n'est pas s.c.i. en \(x \) car sinon \(F \) serait s.c.i. en \(x \).

(i)

5) S.C.I. en \(x \longrightarrow \) i.c. en \(x \); Suppression de l'hypothèse (i)

\(X = \mathbb{R}, x = 0, Y = \mathbb{Z} \)
\[F(0) = z \]
\[F(\omega) = z_{n} \text{ si } \omega \neq 0 \]

\[F(0) = \mathbb{Z} \]

F est s.c.i. en 0 car l'adhérence de \(Z_{0} \) est \(\mathbb{Z} \)
F n'est pas i.c. en \(x = 0 \) ; on prend \(x_{n} = \frac{1}{n} \), \(y = n_{1} \) (aucune suite de points de \(Z_{0} \) ne peut tendre vers \(n_{1} \) de \(Z_{0} \) car \(Z_{0} \) est séquentiellement fermé).

6) s.c.i. en \(x \) \(\longrightarrow \) i.c. en \(x \) ; Suppression de l'hypothèse (i)

Même chose que 5) F est s.c.i. en \(x \) car \(x \) admet un système fondamental dénombrable de voisinages.

7) s.c.i. en \(x \) \(\longrightarrow \) i.c. en \(x \) ; Suppression de l'hypothèse (i)

Même chose que 5) F est s.c.i. en \(x \) car \(x \) admet un système fondamental dénombrable de voisinages.
III - SECOND TYPE DE CONTINUITÉ : LA CONTINUITÉ SUPÉRIEURE

F désigne toujours une application multivoque de l'espace topologique X dans P(Y), (l'ensemble des parties de l'espace topologique Y).

III - 1 Définitions

Définition III - 1 - 1 (Hill, Kuratowski, Bouligand, Choquet)

L'application F est dite semi-continue supérieurement par inclusion, au point x, si et seulement si :

$$\forall \{x_n\} \supseteq x, \lim_{n \to \infty} F(x_n) \subseteq F(x)$$

Définition III - 1 - 2 (Hahn, Choquet, Berge)

L'application F est dite semi-continue supérieurement au point x, si et seulement si :

$$\forall 0 \in Y, \text{ ouvert, } F(x) \subseteq 0 \Rightarrow \exists V \subseteq V(x) : \forall x' \in V, F(x') \subseteq 0$$

Définition III - 1 - 3 (Debreu, Hogan, Huard)

L'application F est dite sup-continue, au point x si et seulement si :

$$\forall \{x_n\} \supseteq x$$

$$\forall \{y_n\} \supseteq y \text{ tel que } y_n \in F(x_n) \forall n$$

$$\Rightarrow y \in F(x)$$
Définition III - 1 - 4 (Choquet)

L'application F est dite faiblement semi-continue supérieurement au point x, si et seulement si:

\[\forall y \notin F(x), \exists U \in V(x), \exists V \in V(y) : x' \in U \Rightarrow F(x') \cap V = \emptyset \]

Remarque 1

Choquet parle de semi-continuité supérieure forte pour la propriété donnée à la définition III - 1 - 2.

III - 2 Propriétés

Proposition III - 2 - 1

1) Si F est S.C.S. en x, ou f.s.c.s. en x alors $F(x)$ est fermé.

2) Si F est s.c. en x alors $F(x)$ est séquentiellement fermé.
Proposition III - 2 - 2

En considérant les hypothèses suivantes :

(i) Y vérifie le premier axiome de dénombrabilité

(ii) Le point x admet un système fondamental dénombrable de voisinages

(iii) Y est régulier

(iv) F(x) est fermé

(v) \(\bigcap F(x) \) est compact (toujours vérifié si par exemple Y est compact)

On a le tableau :

Tableau II
Remarque 2
Dans l'implication :
(i), (ii)
S.C.S. en $x \rightarrow$ f.s.c.s. en x

L'hypothèse (i) peut être remplacée par l'hypothèse :

Y est localement compact et $F(x)$ compact.

Remarque 3
Comme pour le tableau I si on suppose que X et Y vérifient tous deux
le premier axiome de dénombrabilité alors certaines propriétés sont
équivalentes (de façon précise il s'agit des propriétés de S.C.S.,
s.c. et f.s.c.s.)

Par contre la propriété de s.c.s. reste indépendante.

Proposition III - 2 - 3

En considérant les hypothèses suivantes

(i) Y est un espace métrique à boules fermées compactes

(ii) $F(x)$ est compact

(iii) $\exists U \in \mathcal{V}(x) : \forall x' \in U \ F(x')$ est connexe

(iv) $\exists C$ compact, $\exists U' \in \mathcal{V}(x) : \forall x' \in U' \ F(x') \cap C \neq \emptyset$

Alors :

(i) (ii) (iii) (iv)

S.C.S. en $x \rightarrow$ s.c.s. en x.

Remarque

Il faut bien faire attention à la définition que Berge prend pour la
propriété de s.c.s. sur X. Pour lui une fonction multivoque s.c.s. sur
X est une fonction vérifiant :

- F est s.c.s. pour tout $x \in X$

et

- $F(x)$ est un compact pour tout $x \in X$.

III - 3 Démonstrations

Démonstration de la proposition III - 2 - 1

S.C.S. en \(x \Rightarrow F(x) \) fermé

Soit \(\{x_n = x\}_N \), on a si \(F \) est S.C.S. en \(x \)

\[
\lim_{N} F(x_n) \subseteq F(x), \text{ donc } F(x) \subseteq F(x), \text{ donc } F(x) \text{ est fermé.}
\]

f.s.c.s. en \(x \Rightarrow F(x) \) fermé

Montrons que si \(F \) est f.s.c.s. en \(x \), alors \(F(x) \) est ouvert.

Soit \(y \notin F(x) \) et soit \(U \) et \(V \) donnés par la définition de la propriété de f.s.c.s. ; on a :

\[x' \in U \Rightarrow F(x') \cap V = \emptyset \]

Donc en particulier,

\[F(x) \cap V = \emptyset \]

Ce qui montre bien que \(F(x) \) est ouvert.

s.c. en \(x \Rightarrow F(x) \) séquentiellement fermé.

On le voit immédiatement en prenant une suite constante \(\{x_n = x\}_N \).

Démonstration de la proposition III - 2 - 2

(i), (ii)

s.c. en \(x \Rightarrow \) f.s.c.s. en \(x \)

Supposons que \(F \) est s.c. en \(x \) et que \(F \) n'est pas f.s.c.s. en \(x \) et cherchons une contradiction.

Dire que \(F \) n'est pas f.s.c.s. en \(x \), cela signifie qu'il existe \(y \notin F(x) \) tel que :

\[\forall U \in \mathcal{V}(x) \forall V \in \mathcal{V}(y), \exists x' \in U, F(x') \cap V \neq \emptyset \quad (*) \]

Si on désigne par \(\{U_n\}_N \) et \(\{V_n\}_N \) un système fondamental dénombrable de voisinages de \(x \) et de \(y \), respectivement, alors grâce à \((*)\) en prenant

\(U = U_n \) et \(V = V_n \) on peut construire pour tout \(n \in \mathbb{N} \) un point \(x_n \in U_n \) et un point \(y_n \in F(x_n) \cap V_n \neq \emptyset \).
Les suites \(\{x_n\}_n \) et \(\{y_n\}_n \) ainsi obtenues sont telles que
\[
\{x_n\}_n \to x, \ {y_n\}_n \to y \ ; \ \forall n \in \mathbb{N}, \ y_n \in F(x_n).
\]
et pourtant \(y \notin F(x) \), ce qui est en contradiction avec l'hypothèse que \(F \) est s.c. en \(x \).

S.C.S. en \(x \) + s.c. en \(x \)

Supposons que \(F \) est S.C.S. en \(x \) et donnons nous\[
\{x_n\}_n \to x ; \{y_n\}_n \to y, \text{ telles que pour tout } n : y_n \in F(x_n).
\]
On a alors :
\[
y \in \lim_{N} F(x_n) \subset \lim_{N} F(x_n) \subset F(x)
\]
Ce qui montre que \(F \) est s.c. en \(x \).

(iii), (iv)

\[\text{s.c.s. en } x \rightarrow \text{ en f.s.c.s. en } x\]

Supposons que \(F \) est s.c.s. en \(x \), que \(Y \) est régulier et que \(F(x) \) est fermé. Soit \(y \notin F(x) \). Soit \(\emptyset \) un voisinage ouvert de \(F(x) \) et \(V \) un voisinage de \(y \) tel que : \(\emptyset \cap V = \emptyset \).
Puisque \(F \) est s.c.s. en \(x \), il existe \(U \subset V(x) \) tel que :
\[
x' \in U \Rightarrow F(x') \subset \emptyset ; \text{ donc tel que :}
\]
\[
x' \in U \Rightarrow F(x') \cap V = \emptyset
\]
Nous avons montré que \(F \) est f.s.c.s. en \(x \).

(v)

\[\text{f.s.c.s. en } x \rightarrow \text{ s.c.s. en } x\]

Supposons que \(F \) est f.s.c.s. en \(x \) et que \(\overline{F(x)} \) est compact.
Soit \(\emptyset \) tel que \(F(x) \subset \emptyset \). Pour tout \(y \in F(x) \) soit \(U_y \) et \(V_y \) tel que :
\[
x' \in U_y \Rightarrow F(x') \cap V_y = \emptyset. \text{ La famille } (V_y)_y \subset \overline{F(x)} \text{ recouvre } F(x) \text{ et donc recouvre } \bigcup_0 \text{ qui est compact (puisquelle c'est un fermé du compact } \overline{\bigcup F(x)} \).
\]
Soit \(V_{y_1}, V_{y_2}, \ldots, V_{y_m} \) un recouvrement fini de \(\bigcup_0 \) extrait du recouvrement \((V_y)_y \subset \overline{F(x)} \).
On pose \(U = U_{y_1} \cap U_{y_2} \cap \ldots \cap U_{y_m} \).

\(U \) est un voisinage de \(x \) et si \(x' \in U \) alors

\[
F(x') \cap V_{y_1} = \emptyset, \ldots, F(x') \cap V_{y_m} = \emptyset
\]

ce qui implique que :

\[
F(x') \cap (V_{y_1} \cup V_{y_2} \cup \ldots \cup V_{y_m}) = \emptyset
\]

et donc que :

\[
F(x') \cap \bigcup_{y \in Y} \emptyset = \emptyset
\]

Ce qui s'écrit aussi :

\[
F(x') \subseteq \emptyset
\]

Ceci montre que \(F \) est s.c.s. en \(x \).

f.s.c.s. en \(x \) → S.C.S. en \(x \)

Supposons que \(F \) est f.s.c.s. en \(x \). Pour montrer que \(F \) est S.C.S. en \(x \),
donnons-nous \(\{ x_n \} \to x \) et montrons que : \(\limlim F(x_n) \subseteq F(x) \), ou ce qui est
équivalent que :

\[
\bigcap_{n \in \mathbb{N}} F(x_n) \subseteq \bigcap_{n \in \mathbb{N}} \limlim F(x_n).
\]

Pour cela : soit \(y \in F(x) \); par hypothèse :

\[
\exists U \in \mathcal{V}(x), \exists V \in \mathcal{V}(y) : \forall x' \in U, F(x') \cap V = \emptyset.
\]

Ce qui, puisque \(\{ x_n \} \to x \) donne :

\[
\exists n_0 \in \mathbb{N}, \exists V \in \mathcal{V}(y) : \forall n \geq n_0, F(x_n) \cap V = \emptyset
\]

Ce qui est littéralement l'affirmation \(y \not\in \limlim F(x_n) \) ce que justement
nous voulions.

(i)

\(s.c. \text{ en } x \longrightarrow \text{ S.C.S. en } x \)

Supposons que \(F \) est s.c. en \(x \). Pour montrer que \(F \) est S.C.S. en \(x \) donnons-
nous \(\{ x_n \} \to x \) et \(y \in \limlim F(x_n) \) et montrons que \(y \in F(x) \). Puisque \(Y \)
vérifie (i) d'après la propriété \(I - 3 - 3 \), il existe \(N' \subseteq \mathbb{N} \) et \(\{ y_n \} \to y \)
tels que : \(n \in N' \Rightarrow y_n \in F(x_n) \).

En classant les éléments de \(N' \) par ordre croissant \(h(o), h(1), \ldots, h(n), \ldots \)
et en posant \(t_n = x_{h(n)} \) et \(z_n = y_{h(n)} \) on a :
\{t_n\}_{n \in \mathbb{N}} \rightarrow x
\{z_n\}_{n \in \mathbb{N}} \rightarrow y
\forall n \in \mathbb{N}, z_n \in F(t_n)

et donc :
y \in F(x).

(ii) (v)
S.C.S. en x \longrightarrow \text{s.c.s. en } x

Supposons que F est S.C.S. et que F n'est pas s.c.s. en x.

On a donc un ouvert \(O \) de \(Y \) tel que :

\[F(x) \subset O \text{ et } \forall U \in \mathcal{U}(x), \exists x' \in U : F(x') \notin O \quad (*) \]

En désignant par \(\{U_i\}_{i \in \mathbb{N}} \) un système fondamental dénombrable de voisinages de x, et grâce à (*) on peut donc construire une suite \(\{x_n\}_{n \in \mathbb{N}} \) telle que :

\[\forall n, x_n \in U_n \text{ et } F(x_n) \notin O \]

Si \(F(x_n) \notin O \), il existe \(y_n \in F(x_n) \) tel que \(y_n \notin O \). La suite \(\{y_n\}_{n \in \mathbb{N}} \) ainsi construite est une suite de points de \(\bigcap O \) qui est compact d'après l'hypothèse (v), elle admet donc un point d'accumulation \(\bar{y} \). Par définition d'un point d'accumulation, on a \(\bar{y} \in \lim_{\mathbb{N}} F(x_n) \), donc puisque F a été supposé S.C.S. \(\bar{y} \in F(x) \), mais ceci est en contradiction avec le fait que :

\[y_n \notin O \quad \forall n. \]

Les 7 implications que nous venons de démontrer permettent de reconstituer le tableau II.

Démonstration de la proposition III - 2 - 3

Supposons que F est S.C.S. en x mais n'est pas s.c.s. en x. Il existe donc un ouvert \(O \) tel que \(F(x) \subset O \) et tel que :

\[\forall V \in \mathcal{U}(x), \exists x' \in V : F(x') \subset O \quad (*) \]

On désigne par \(\{V_n\}_{n \in \mathbb{N}} \) un système fondamental dénombrable de voisinages de x, on peut supposer sans perdre de généralité que :

\[\forall n \in \mathbb{N}, V_n \subset U_n U' \]
Grâce à (*) on construit une suite \(\{ x_n \}_{n \in \mathbb{N}} \rightarrow x \) telle que :
\[\forall n \in \mathbb{N}, \ x_n \in V_n, \ et \ F(x_n) \neq \emptyset \ et \ F(x_n) \ connecte \]

Ce qui en posant \(G = \bigcup \emptyset \) donne donc :
\[\forall n \in \mathbb{N}, \ F(x_n) \cap G \neq \emptyset \ et \ F(x_n) \ connecte \]

D'après l'hypothèse sur \(C \) et la proposition I - 3 - 6
\[\lim_{n \to \infty} F(x_n) \cap G \neq \emptyset ; \ et \ donc \ \lim_{n \to \infty} F(x_n) \neq \emptyset \]

Puisque \(F \) est S.C.S. en \(x \) on a :
\[\lim_{n \to \infty} F(x_n) \subset F(x) \]
donc :
\[\lim_{n \to \infty} F(x_n) \text{ est compact} \]

Grâce à la proposition I - 3 - 6, on en déduit que :
\[\lim_{n \to \infty} F(x_n) \cap G \neq \emptyset ; \ et \ donc \ F(x) \cap G \neq \emptyset \]

ce qui implique que :
\[F(x) \neq \emptyset . \]

On a donc une contradiction.

III - 4 Contre-exemples

Contre-exemples pour la proposition III - 2 - 2

(i) \[1) \text{s.c. en } x \longrightarrow \text{S.C.S. en } x ; \text{ Suppression de l'hypothèse (i)} \]

\(Y = Z, \ X = \mathbb{R}, \ x = 0, \ F(y) = Z_0 \) pour tout \(y \in \mathbb{R} \)

\(F \) est s.c. en \(x = 0 \)

\(F \) n'est pas S.C.S. en \(0 \) car \(F(0) \) n'est pas fermé.

(ii) \[2) \text{s.c. en } x \longrightarrow \text{f.s.c.s. en } x ; \text{ Suppression de l'hypothèse (i)} \]

Même chose que pour le contre-exemple 1.

\(F \) n'est pas f.s.c.s. en \(x \) car sinon \(F \) serait S.C.S. en \(x \).

(i) \[3) \text{s.c. en } x \longrightarrow \text{f.s.c.s. en } x ; \text{ Suppression de l'hypothèse (ii)} \]

\(Y = \{ 0, 1 \}, \ X = Z, \ x = N_1. \)
\[F(y) = \{0, 1\} \quad \text{si} \ y \neq N_1 \]
\[F(N_1) = \{0\}. \]

\(F \) est s.c. en \(x \) car les seules suites convergentes vers \(x \) sont celles qui sont constantes à partir d'un certain rang.

\(F \) n'est pas f.s.c.s. en \(x \) (on prend \(y = 1 \) et alors :
\[\forall U \in V(x), \ \forall V \in V(y), \ \exists x' \in U : F(x') \cap V \neq \emptyset \]

(i) (ii)
4) S.C.S. en \(x \) \(\rightarrow \) f.s.c.s. en \(x \); Suppression de l'hypothèse (i)
On prend : \(Y = \mathbb{R}^+[0, 1] \), c'est-à-dire l'ensemble des applications de \([0, 1]\) dans \(\mathbb{R}^+ \), muni de la topologie produit (topologie de la convergence simple).
\[X = [0, 1] \subset \mathbb{R}. \]

On désigne par \(P^*_f([0, 1]) \) l'ensemble des parties finies de \([0, 1]\).
On peut montrer qu'il existe \((P^*_\sigma) \sigma \in P^*_f([0, 1]) \) une partition de \([0, 1]\) telle que :
- son ensemble d'indexation est \(P^*_f([0, 1]) \),
- chacun des ensembles \(P^*_\sigma \) est un ensemble dénombrable ayant 0 pour seul point d'accumulation.

Soit \(x \neq 0 \), on désigne \(f_x \) l'application de \([0, 1] \to \mathbb{R} \) définie par :
\[f_x(y) = 0 \quad \text{si} \ y \in \sigma \]
\[f_x(y) = \frac{1}{x} \quad \text{si} \ y \notin \sigma, \]

où \(\sigma \) est l'indice de l'ensemble \(P^*_\sigma \) unique tel que \(x \in P^*_\sigma \).

On pose alors : \(F(x) = \{f_x\} \) si \(x \neq 0 \)
\[F(0) = \emptyset \]

On vérifie alors que \(F \) est S.C.S. en \(x = 0 \), et que par contre \(F \) n'est pas f.s.c.s. en \(x \) (on prend pour \(y \) la fonction nulle).

(i), (ii)
5) S.C.S. en \(x \) \(\rightarrow \); suppression de l'hypothèse (ii)

Même chose que le contre-exemple 3)
On montre que F est S.C.S. en x en utilisant le tableau II et le fait que (i) est vérifié.

(v)

6) $\text{s.c.s. en } x \rightarrow \text{s.c.s. en } x$; suppression de l'hypothèse (v)

$X = Y = \mathbb{R}$; $F(x) = \{1/x\}$ si $x \neq 0$; $F(0) = \{0\}$

(ii), (v)

7) S.C.S. en $x \rightarrow \text{s.c.s. en } x$; suppression de l'hypothèse (v)

Même chose que le contre-exemple 6).

(ii), (v)

8) S.C.S. en $x \rightarrow \text{s.c.s. en } x$; suppression de l'hypothèse (ii)

Même chose que le contre-exemple 3).

F n'est pas s.c.s. en x (on prend $0 = \{0\}$).

(i), (ii), (v)

9) s.c. en $x \rightarrow \text{s.c.s. en } x$; suppression de l'hypothèse (v)

Même chose que le contre-exemple 6).

(i), (ii), (v)

10) s.c. en $x \rightarrow \text{s.c.s. en } x$; suppression de l'hypothèse (i)

$X = \{1/n \mid n \in \mathbb{N}\} \cup \{0\}$.

$Y = [0, 1]^{0, 1}$ (muni de la topologie produit)

On définit F en posant :

$F(1/n) = \{\alpha_n\}$

$F(0) = \emptyset$

où $\{\alpha_n\}$ est la suite définie page 126 du livre de Lynn A. Steen et J.A. Seebach.

(i), (ii), (v)

11) s.c. en $x \rightarrow \text{s.c.s. en } x$; suppression de l'hypothèse (i)

Même chose que le contre-exemple 3).
(iii), (iv)
12) s.c.s. en x \rightarrow s.c. en x ; suppression de l'hypothèse (iv)

\[X = Y = \mathbb{R}, \quad x = 0. \]
\[F(x) = \emptyset, 0, 1, \forall x \in \mathbb{R} \]

(iii), (iv)
13) s.c.s. en x \rightarrow s.c. en x ; suppression de l'hypothèse (iii)

\[Y = \mathbb{R} \text{ muni de la topologie la moins fine engendrée par les ouverts de } \mathbb{R} \]
(pour sa topologie usuelle) et par Q.

On montre que, muni de cette topologie, \mathbb{R} n'est pas régulier car par exemple le fermé $G = \{Q \text{ et } x \in Q \text{ ne peuvent être séparés.} \}$

On prend $X = \mathbb{R}$ (muni de la topologie usuelle).

On pose : $F(x) = G.(1+x) = \{y \in \mathbb{R} \mid \exists z \in Q : y = z.(1+x)\}$.

F est s.c.s. en 0 car le seul ouvert de Y contenant G est Y.

(iii), (iv)
14) s.c.s. en x \rightarrow f.s.c.s. en x ; suppression de l'hypothèse (iv)

Même chose que le contre-exemple 12)

(iii), (iv)
15) s.c.s. en x \rightarrow f.s.c.s. en x ; suppression de l'hypothèse (iii)

Même chose que le contre-exemple 13)

(iii), (iv)
16) s.c.s. en x \rightarrow S.C.S. en x ; suppression de l'hypothèse (iv)

Même chose que le contre-exemple 12)

(iii), (iv)
17) s.c.s. en x \rightarrow S.C.S. en x ; suppression de l'hypothèse (iii)

Même chose que le contre-exemple 13)

Contre-exemples pour la proposition III - 2 - 3

1) Suppression de l'hypothèse (i)

\[Y = \mathbb{R}^2 - \{0, -1, (0, +1)\} \]
\[X = \mathbb{R}^+ \]
\[F(x) = \begin{cases} (x, -1), (x, +1) & \text{si } x \neq 0 \\ F(0) = (0, -1) \end{cases} \]

2) Suppression de l'hypothèse (ii)

\[Y = \mathbb{R}^2 \]
\[X = \mathbb{R}^+ \]
\[F(a) = \{ (x, y) \in \mathbb{R}^2 \mid y = a \cdot x \} \]

3) Suppression de l'hypothèse (iii)

\[X = Y = \mathbb{R} \]
\[F(x) = \{ x, \frac{1}{x} \} \text{ pour } x \neq 0, \quad F(0) = \{0\} \]

4) Suppression de l'hypothèse (iv)

\[X = Y = \mathbb{R} \]
\[F(x) = \{ \frac{1}{x} \} \text{ pour } x \neq 0, \quad F(0) = \emptyset. \]
Annexe : Rappels sur les ordinaux

Définition

Un ensemble ordonné A est dit bien ordonné si toute partie non vide B de A admet un plus petit élément.

On dit que l'ensemble α est un ordinal si :

i) la relation x ∈ y est sur α une relation d'ordre total strict qui est un bon ordre.

ii) si pour tout x ∈ α : x < α.

Exemples

1) 0 ; {0} ; {0, {0}} ; {0, {0}, {0, {0}}}; ...

notés respectivement : 0 ; 1 ; 2 ; 3 ; ... (n + 1 = n ∪ {n})

ii) N₀ = ω = {0, 1, 2, 3, ...}

iii) ω + 1 = ω ∪ {ω} ; ω + 2 = (ω + 1) ∪ {ω + 1}; ...

iv) 2ω = ∪ n∈ω (ω + n) ; 3ω = ∪ n∈ω 2ω + n; ...

v) ω² = ∪ n∈ω nω ; ω³ = ∪ n∈ω nω² ; ...

vi) ωⁿ = ∪ n∈ω ω

Propriétés

1) Si α est un ordinal, les éléments de α en sont aussi, et α ∪ {α} est aussi un ordinal (noté α + 1)

2) La collection des ordinaux est bien ordonnée par la relation : x ∈ y.

3) Tout ensemble d'ordinaux a une borne supérieure qui est sa réunion.

4) Tout ensemble bien ordonné est isomorphe à un ordinal et un seul.

5) On dit que α est un ordinal limite si il n'est pas de la forme β + 1. ω, 2ω, ..., ω², ... par exemple, sont des ordinaux limites.
vi) En admettant l'axiome du choix, les ordinaux dénombrables forment un ensemble non dénombrable noté N_1 qui est le plus petit ordinal non dénombrable.

Topologie sur les ordinaux

Soit α un ordinal, la topologie que nous considérons sur α est celle dont une base d'ouverts est constituée des intervalles ouverts.

Pour cette topologie, une suite $\{\beta_n\}_{n \in \mathbb{N}}$ de points de α converge vers β, si et seulement si

$$\forall \beta' < \beta \exists n_0 \forall n > n_0 \beta_n > \beta'$$

$$\forall \beta'' > \beta \exists m_0 \forall m > m_0 \beta_m < \beta''$$

en particulier en considérant : $\beta'' = \beta + 1$, on voit que la seconde relation est équivalente à :

$$\exists m_0 \forall m > m_0 \beta_m \leq \beta$$

Quant à la première, si β est de la forme $\gamma + 1$ (c'est-à-dire si β n'est pas un ordinal limite) elle équivaut à :

$$\exists m_0 \forall n > n_0 \beta_n \geq \beta$$

On voit donc que si β n'est pas un ordinal limite une suite ne converge vers β que si elle est constante à partir d'un certain rang. De façon imagée on peut dire que cette topologie sur un ordinal est "presque partout discrète".

Tout ordinal $\beta < \alpha$ est un ouvert de α car $\beta =] +, \beta + 1[$.

Proposition

i) α est un ordinal limite \iff α n'est pas compact.

ii) Si α est compact toute suite croissante $\{x_n\}_{n \in \mathbb{N}}$ est convergente de limite $x = \cup_{n \in \mathbb{N}} x_n$.
Démonstration

i) "=>$"

Soit α un ordinal limite.

L'ensemble des ordinaux $\beta < \alpha$ forme un recouvrement ouvert de α. Si on pouvait en extraire un recouvrement fini $\beta_0, \beta_1, ..., \beta_n$ en désignant par β_i le plus grand des éléments de ce recouvrement, on aurait $\beta_i \leq \alpha$ et $\beta_i + 1 \geq \alpha$ donc $\beta_i + 1 = \alpha$ contrairement à l'hypothèse.

"<=$"

Soit $\alpha = \beta + 1$ un ordinal non limite.

Soit $\{u_i\}_{i \in I}$ un recouvrement ouvert de α.

Soit i_o tel que : $\beta \in u_{i_o}$.

Soit α_1 le plus petit élément de a tel que : $\alpha_1 \not\in u_{i_o}$ et tel que :

$\forall \alpha' > \alpha_1, \quad \alpha' \in \alpha \Rightarrow \alpha' \in u_{i_o}$

Soit i_1 tel que : $\alpha_1 \in u_{i_1}$

Soit α_2 le plus petit élément de a tel que $\alpha_2 \not\in u_{i_1}$, et tel que :

$\forall \alpha' > \alpha_2, \quad \alpha' \in \alpha \Rightarrow \alpha' \in u_{i_1} u_{i_o} \text{ etc...}$

La suite $\alpha_1, \alpha_2, ..., \alpha_n$ ainsi construite est strictement décroissante et donc finie. Quand on s'arrête c'est que :

$u_{i_1} u_{i_2} u_{i_3} ... u_{i_n} = \alpha$, on a donc extrait un recouvrement fini.

ii) Soit $\{x_n\}_{n \in \mathbb{N}}$ une suite croissante de points de $\alpha = \beta + 1$.

$(n \geq m \Rightarrow x_n \geq x_m)$.

Soit $x = \bigcup_{n \in \mathbb{N}} x_n$. Puisque pour tout $n \in \mathbb{N}$, $x_n \leq \beta$ on $a : x \leq \beta$, donc : $x \in a$.

Soit V un voisinage de x, il contient un ouvert de la forme

$]x', x + 1[$ avec $x' < x$.

Si on avait : $x_n \leq x'$ pour tout n alors on aurait : $x \leq x' < x !$, donc il existe $n_o \in \mathbb{N}$ tel que :

$n \geq n_o \Rightarrow x_n > x'$.
Comme la suite est croissante on a : \(x_n \leq x \) pour tout \(n \) et donc on a montré que :
\[
\forall V \in \mathcal{V}(x) \exists n_0 \in \mathbb{N} \forall n \geq n_0 \quad x_n \in V.
\]
ce qui est la convergence vers \(x \).

Dans les contre-exemples nous utiliserons fréquemment l'espace \(Z = \mathbb{N}_1 + 1 \), aussi allons-nous énoncer quelques unes des propriétés les plus importantes de \(Z \).

Théorème

i) \(Z \) est compact

ii) Le sous-espace \(Z_0 = \mathbb{N}_1 \) de \(Z \) est séquentiellement compact (donc séquentiellement fermé) mais non compact (donc non fermé).

iii) une suite de points de \(Z \) converge vers \(\mathbb{N}_1 \) si et seulement si elle est constante à partir d'un certain rang.

Démonstration

i) Cela résulte de la proposition précédente :

ii) Que \(Z_0 \) ne soit pas compact résulte de la proposition précédente. Montrons que \(Z_0 \) est séquentiellement compact.

Soit \(\{x_n\}_{n \in \mathbb{N}} \) une suite de points de \(Z_0 \) on définit par récurrence la sous-suite \(\{x_{h(n)}\}_{n \in \mathbb{N}} \):

\begin{itemize}
 \item \(h(0) \) est le plus petit des entiers \(i \in \mathbb{N} \) tels que \(x_i \) est le plus petit élément de l'ensemble des \(x_n \), \(n \in \mathbb{N} \).
 \item \(h(i+1) \) est le plus petit des entiers \(i > h(i) \) tels que \(x_i \) est le plus petit élément de l'ensemble des \(x_i \), \(i > h(i) \).
\end{itemize}

La sous-suite est croissante donc convergente de limite \(\lim_{i \in \mathbb{N}} x_{h(i)} \), qui est un élément de \(Z_0 \) car une réunion dénombrable d'ensembles dénombrables l'est.
iii) Soit \(\{x_n\}_{n \in \mathbb{N}} \) une suite de points de \(\mathbb{Z} \) convergente vers \(N_1 \) si elle n'est pas constante égale à \(N_1 \), à partir d'un certain rang, il existe une sous-suite \(\{x_{n'}\}_{n' \in \mathbb{N}'} \) de \(\{x_n\}_{n \in \mathbb{N}} \), telle que \(n' \in \mathbb{N'} \Rightarrow x_{n'} \in \mathbb{Z}_0 \). Cette sous-suite admet une sous-suite croissante convergente \(\{x_{n''}\}_{n''} \) vers \(x \) qui ne peut pas être \(N_1 \) car \(x = \bigcup_{n'' \in \mathbb{N}''} x_{n''} \) est dénombrable. ceci est absurde.

Pour plus de détails sur ces questions, se reporter par exemple à J.L. Krivine et Steen et Seebach.