Publications

Petitot M.

15 septembre 2010

References

[1]
M. Bigotte, G. Jacob, N. E. Oussous, and M. Petitot. Generating power series of coloured polylogarithm functions and Drinfel'd associator. In Computer mathematics (Chiang Mai, 2000), volume 8 of Lecture Notes Ser. Comput., pages 39-48. World Sci. Publ., River Edge, NJ, 2000.
[2]
M. Bigotte, G. Jacob, N. E. Oussous, and M. Petitot. Lyndon words and shuffle algebras for generating the coloured multiple zeta values relations tables. Theoret. Comput. Sci., 273(1-2):271-282, 2002. WORDS (Rouen, 1999).
[3]
F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Representation for the radical of a finitely generated differential ideal. In ISSAC '95: Proceedings of the 1995 international symposium on Symbolic and algebraic computation, pages 158-166, New York, NY, USA, 1995. ACM.
[4]
François Boulier, François Ollivier, Daniel Lazard, and Michel Petitot. Computing representations for radicals of finitely generated differential ideals. Appl. Algebra Engrg. Comm. Comput., 20(1):73-121, 2009.
[5]
C. Costermans, J. Y. Enjalbert, Hoang Ngoc Minh, and M. Petitot. Structure and asymptotic expansion of multiple harmonic sums. In ISSAC'05, pages 100-107 (electronic). ACM, New York, 2005.
[6]
O. Didrit, M. Petitot, and E. Walter. Guaranteed solution of direct kinematic problem for Stewart platforms. I.E.E.E. Trans. on robotics and automation, 14(2):259-266, Sept 1998.
[7]
Raouf Dridi and Michel Petitot. Towards a new ODE solver based on Cartan's equivalence method. In ISSAC 2007, pages 135-142. ACM, New York, 2007.
[8]
Raouf Dridi and Michel Petitot. New classification techniques for ordinary differential equations. J. Symbolic Comput., 44(7):836-851, 2009.
[9]
V. Houseaux, G. Jacob, N. E. Oussous, and M. Petitot. A complete Maple package for noncommutative rational power series. In Computer mathematics, volume 10 of Lecture Notes Ser. Comput., pages 174-188. World Sci. Publ., River Edge, NJ, 2003.
[10]
Hoang Ngoc Minh, Gérard Jacob, Michel Petitot, and Nour Eddine Oussous. Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier. Sém. Lothar. Combin., 43:(electronic, 29 pp.), 1999.
[11]
Hoang Ngoc Minh, Gérard Jacob, Michel Petitot, and Nour Eddine Oussous. De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées. Sém. Lothar. Combin., 44:(electronic, 21 pp.), 2001.
[12]
Hoang Ngoc Minh and Michel Petitot. Lyndon words, polylogarithms and the Riemann ζ function. Discrete Math., 217(1-3):273-292, 2000. Formal power series and algebraic combinatorics (Vienna, 1997).
[13]
Hoang Ngoc Minh, Michel Petitot, and Joris Van Der Hoeven. Computation of the monodromy of generalized polylogarithms. In ISSAC '98: Proceedings of the 1998 international symposium on Symbolic and algebraic computation, pages 276-283, New York, NY, USA, 1998. ACM.
[14]
Hoang Ngoc Minh, Michel Petitot, and Joris Van Der Hoeven. L'algèbre des polylogarithmes par les séries génératrices. In Proc. of FPSAC'99, 11-th international Conference on Formal Power Series and Algebraic Combinatorics, Barcelona, June 1999.
[15]
Hoang Ngoc Minh, Michel Petitot, and Joris Van Der Hoeven. Shuffle algebra and polylogarithms. Discrete Math., 225(1-3):217-230, 2000. Formal power series and algebraic combinatorics (Toronto, ON, 1998).
[16]
Sylvain Neut and Michel Petitot. La géométrie de l'équation y"′=f(x,y,y′,y"). C. R. Math. Acad. Sci. Paris, 335(6):515-518, 2002.
[17]
Sylvain Neut, Michel Petitot, and Raouf Dridi. Élie Cartan's geometrical vision or how to avoid expression swell. J. Symbolic Comput., 44(3):261-270, 2009.
[18]
P. J. Olver, M. Petitot, and P. Solé. Generalized transvectants and Siegel modular forms. Adv. in Appl. Math., 38(3):404-418, 2007.
[19]
N. E. Oussous and M. Petitot. Scratchpad implementation of the local minimal realization of dynamic systems. In Algebraic computing in control (Paris, 1991), volume 165 of Lecture Notes in Control and Inform. Sci., pages 60-75. Springer, Berlin, 1991.
[20]
Nour-Eddine Oussous and Michel Petitot. xtaylor: un algorithme pour les polynômes non commutatifs. In Proceedings of WORDS'03, volume 27 of TUCS Gen. Publ., pages 212-221. Turku Cent. Comput. Sci., Turku, 2003.