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ABSTRACT

The automatic prediction of the quality of a dialogue is useful to
keep track of a spoken dialogue system’s performance and, if nec-
essary, adapt its behaviour. Classifiers and regression models have
been suggested to make this prediction. The parameters of these
models are learnt from a corpus of dialogues evaluated by users or
experts. In this paper, we propose to model this task as an ordinal re-
gression problem. We apply support vector machines for ordinal re-
gression on a corpus of dialogues where each system-user exchange
was given a rate on a scale of 1 to 5 by experts. Compared to previous
models proposed in the literature, the ordinal regression predictor
has significantly better results according to the following evaluation
metrics: Cohen’s agreement rate with experts ratings, Spearman’s
rank correlation coefficient, and Euclidean and Manhattan errors.

Index Terms— Interactive Systems, Statistical Learning, Per-
formance Evaluation

1. INTRODUCTION

Spoken Dialogue Systems (SDS) are a compound of several mod-
ules: Automatic Speech Recognition (ASR), natural language un-
derstanding, dialogue management, natural language generation and
speech synthesis. An individual technical evaluation of its compo-
nents is not sufficient to evaluate a system. Indeed, the behaviour
emerging from the interaction between the modules must be eval-
uated to ensure system appropriateness, correctness and adequacy
[1]. Moreover, a technical evaluation should be carried along with a
usability evaluation to measure user acceptance. In this context, two
kinds of evaluation campaigns are carried on SDS. The first kind asks
the user to give a numerical rating and/or fill in a questionnaire about
the dialogue after its end [2, 3, 4]. The second one involves experts
instead of users [5, 6]. In both cases, ratings are meant for system
performance tracking and if necessary, system behaviour adaptation.
These evaluation campaigns are costly so it is desirable to build an
automatic predictor of ratings to pursue online system performance
tracking. The predicted ratings might also serve to learn an optimal
behaviour for the system via Reinforcement Learning (RL) [7, 8, 9].

Several models have been proposed to predict users or experts
ratings in function of dialogue features [2, 10, 6]. This problem has
been considered both as a regression [11] and a classification [12]
issue. This paper proposes ordinal regression as a bridge between
classification and regression. Ordinal regression returns discrete la-
bels but takes into account the ordering of the labels.

∗The authors would like to thank the the Dialogue Systems Group at Ulm
University, Germany for providing the LEGO corpus.

Ordinal Regression with Support Vector machines (SVOR) is
compared to several regression and classification models on the
LEGO corpus [13] which contains 200 annotated dialogues with
CMU’s Let’s Go system [14]. Each system-user exchange was given
an Interaction Quality (IQ) rating on a scale of 1 to 5 by three ex-
perts. It is shown on this corpus that SVOR significantly performs
best on four metrics, both distance and correlation-based.

Section 2 reviews models previously proposed for users or ex-
perts ratings prediction. Section 3 explains the metrics used to com-
pare the models. Section 4 then gives an overview of the LEGO
corpus. Section 5 describes the models compared on LEGO and
Section 6 presents the results of the test of the models.

2. RELATION TO PRIOR WORK

User satisfaction is one of the core components of SDS usability, as
well as efficiency and effectiveness. Möller [15] defines usability
as the “suitability of a system or service to fulfil the user’s require-
ments. Includes effectiveness and efficiency of the system and re-
sults in user satisfaction”. User satisfaction reflects user perception
of dialogue features [16]. Measuring user satisfaction is made by
asking the user to give a numerical rating and/or fill in a question-
naire after each dialogue [2, 3, 4, 17]. Another way to measure the
performance of a system is to appeal to experts and ask them to listen
to dialogues and give a rating to the system according to its manage-
ment of the interaction [5, 6]. This technique enables to eliminate
subjectivity biases related to the user’s environment or the percep-
tion of aspects unrelated to dialogue management such as text-to-
speech voice [15, 6]. This requires nevertheless that the experts are
trained to avoid a great variability in their rating styles. In all that
follows, users ratings will be designated as User Satisfaction (US)
and experts ratings as Interaction Quality (IQ) [6].

Automatically predicting US or IQ is useful to keep track of a
spoken dialogue system’s performance and, if necessary, adapt its
behaviour. This adaptation can be made according to rules inferred
from the ratings. Witt [18] proposed to compute online the Caller
Experience Metric (CEM), a score on a scale of 1 to 5 given by an
expert. To do so, he defined the rule in Equation 1 where the events
are ASR rejection, user time out, user intention misunderstood, user
contradicting the system and user asking to be transferred. d is a
discounting factor to reduce the importance of the furthest events
in time. Witt learnt the weight of each event on a set of annotated
dialogues with three different systems.

CEMt = d× CEMt−1 + weight of the latest event (1)

System behaviour adaptation can also be done by applying a data-
driven statistical method such as RL [19, 20, 21]. An RL agent com-
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pares different strategies on the basis of a numerical reward function.
This function should evaluate the quality of a dialogue strategy. In-
ferring this function from US or IQ [22, 23] is therefore an efficient
way to define it. Finally, another possibility is to ask experts to give
an IQ rating for each system-user exchange and then train a model to
predict this rating at a dialogue turn level. The system can then adapt
its behaviour during a dialogue if its estimation of IQ degrades. For
instance, in such a case, the SDS might prompt contextual help mes-
sages [24], change its current dialogue strategy [25] or even transfer
the call to a human operator [6].

To predict US or IQ on a dialogue or dialogue turn level, re-
gression and classification models were proposed. Walker et. al [2]
applied Multiple Linear Regression (MLR), modelling US as the op-
timisation of task success and minimisation of dialogue costs such
as dialogue duration and ASR rejections. Evanini et. al [5] built
a decision tree to predict IQ. Engelbrecht et. al [10] used Hidden
Markov Models (HMM) to represent the evolution of US throughout
a dialogue. Hara et. al [26] also tackled US prediction. They built
an N-gram model from dialogue acts. Higashinaka et. al compared
HMM and CRF to estimate turn-level IQ. For the same problem,
Schmitt et. al [6] proposed Support Vector Machines (SVM).

Modelling IQ prediction as a pure classification issue does not
enable to take into account the natural ordering of the scores. Indeed,
it cannot take into consideration the fact that, for an actual rating of
1, predicting 2 is better than predicting 5. Regression techniques
do not either explicitly account for the ordering as they only try to
minimise some distance metric between the ratings and the predic-
tions. In this paper, we propose SVOR for turn-level IQ prediction
[27, 28]. Ordinal regression bridges the gap between classification
and regression. It takes as input a set of labelled examples with nat-
urally ordered labels and then builds a predictor in order to minimise
the absolute deviation from the true labels while taking into account
the ordering of the labels.

3. METRICS

SVOR is compared to other regression and classification models on
the basis of several metrics. For RL-based systems, correctly order-
ing the system’s dialogue strategies is important. Indeed, if turn-
level IQ predictions are used as rewards, they must maintain the
ordering of system actions that was induced by the actual experts
ratings. RL frameworks such as the Ordinal Markov Decision Pro-
cess introduced by Weng [29] can then be applied to learn an optimal
behaviour. To measure models performance on this aspect, we use
Spearman’s rank correlation coefficient [30]. This coefficient mea-
sures the correlation between two rankings. Let y = {y1, ..., yn}
and ŷ = {ŷ1, ..., ŷn} be respectively the IQ ratings and estimations
on a set of n system-user exchanges. Let r(y) = {r(y1), ..., r(yn)}
and r(ŷ) = {r(ŷ1), ..., r(ŷn)} be their corresponding rankings. For
instance, if y = {1, 15, 3, 12, 27} than r(y) = {1, 4, 2, 3, 5}. As
recalled in Equation 2 Spearman’s rank correlation coefficient ρ is
equal to the correlation between the two rankings r(y) and r(ŷ).

ρ(y, ŷ) =

∑
i(r(yi)− mean(r(y)))

∑
i(r(ŷi)− mean(r(ŷ)))√∑

i(r(yi)− mean(r(y)))2
√∑

i(r(ŷi)− mean(r(ŷ)))2

(2)

We also compare models on the distances they try to minimise,
namely the Euclidean and Manhattan errors, given in Equations 3
and 4.

Euclidean error(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3)

Manhattan error(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi| (4)

The agreement with the experts is measured with Cohen’s κ co-
efficient [31]. This coefficient computes the probability of agree-
ment between y and ŷ taking off the agreement that might occur by
chance. In Equation 5, P (a) is the probability of agreement and
P (ca) the probability of agreement by chance.

κ(y, ŷ) =
P (a)− P (ca)

1− P (ca)
(5)

4. THE LEGO CORPUS

CMU’s Let’s Go system provides local information on bus sched-
ules [14]. Schmitt et. al [13] had 200 dialogues with this system
evaluated by three experts. These experts were asked to give an IQ
rating on a scale of 1 to 5 after each system-user exchange. In to-
tal, 5282 system-user exchanges were rated. Following Schmitt et.
al [6], in our experiments, we used the median value of the three
ratings provided by the experts.

In LEGO, each system-user exchange is described as a set of fea-
tures that were automatically computed or manually annotated. The
feature set contains parameters related to automatic speech recog-
nition (confidence score, rejection,...), natural language understand-
ing (user dialogue act, semantic parse,...) and dialogue management
(system dialogue act). Following Schmitt et. al [6], we used quan-
tifiable features such as number of ASR rejections on three different
levels: the value for the current dialogue turn, the mean value up to
the current dialogue turn and the mean over the last three exchanges.
A complete list of the features can be found in [13].

For our models comparison, we only kept automatically com-
putable features. This choice was motivated by the fact that if
IQ prediction should be used for system adaptation, it should
be computable online. Two features were not numerical: User
Dialogue Act (UDA) and System Dialogue Act (SDA). UDA
could take values among which UDA CONFIRM DEPARTURE,
UDA LINE INFORMATION, and so on. In these cases, noting
na the number of possible labels, we split the feature into na − 1
variables, each of which being a boolean. SDA was split into 27
variables and UDA, 21. In total, we kept 67 features. Feature values
were centered and normalised.

The generalisability of the methods described in the following
section was assessed with 10-fold cross validation.

5. MODELS

5.1. Multiple Linear Regression

To do MLR, features were selected one by one. We computed the
single regression coefficient for each feature and then we kept the
feature with the highest coefficient in absolute value1. Let us denote
ϕi this most explanatory feature and βi its corresponding coefficient.
We then used the error IQ − βiϕi as objective value and we com-
puted single regression coefficients for the remaining features. We
repeated this process until the squared error was minimised.

1we recall that features were centered and normalised
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Covariance type k(x, x′)

Linear xTΛ−2x′

Rational quadratic σ2(1 + 1
2α

(x− x′)TΛ−2(x− x′))−α

Squared Exponential exp(− 1
2
(x− x′)TΛ−2(x− x′))

Table 1. Covariance matrices for Gaussian processes regression.

5.2. Multivariate Adaptive Regression Splines

MARS was introduced by Friedman [32]. It models IQ as a linear
function of hinge functions of the form: Bi(x) = max(0, x − s)
or Bi(x) = max(0, s − x) where s is a training sample. MARS
was run with the ARES toolbox for Matlab2. The algorithm requires
two parameters, the maximum number of hinge functions maxFuncs
and cubic, which indicates whether cubic splines should be used to
smooth the edges. Different combinations of these parameters were
tried but no significant impact on the evaluation metrics was noticed.
Hence, the default parameters were kept (recommended in [32]),
maxFuncs was set to 21 and cubic splines were not used.

5.3. Gaussian Processes

A Gaussian Process (GP) is a set of random variables which joint dis-
tribution is a Gaussian [33]. To perform GP regression, y is modelled
as: y = ŷ +∆ŷ with ∆ŷ a centered Gaussian noise vector and ŷ is
a GP which mean and variance are to be determined. One advantage
in using GP over other regression methods is that it returns an entire
distribution over the possible values instead of a point-based deci-
sion rule. Another advantage is that it enables a Bayesian treatment
of the data, inferring a posterior distribution from a prior belief and
observations. Following Rasmussen and Williams [33], we defined
a centered prior GP (0, k(x, x)) where k is the covariance function.
Exact inference could then be performed from the training samples
to compute the posterior distribution. We used the GPML Matlab li-
brary by Rasmussen and Nickisch3. Three covariance functions were
tested: linear, rational quadratic and squared exponential. Their ex-
pressions are recalled in Table 1. The parameters Λ, σ and α were all
learnt by automatic relevance determination [34]. Since this compu-
tation is very costly (O(n3) with n the number of training samples),
we only kept in memory a dictionary of points as proposed by En-
gel [35]. This reduced computational load to O(m2n) with m the
dictionary size. Section 6 only presents the results with the squared
exponential kernel as it was the most efficient.

5.4. Support Vector Machines

Originally, SVM [36] were meant for 2-class classification. They
take a set of labelled examples {(xi, yi)} where yi ∈ {−1, 1} and
then they look for a hyperplane in a feature space that separates the
two classes so that the minimal margin between the samples is max-
imised. The decision function returned is given in Equation 6 where
ϕ(x) is the projection of x into the high dimensional feature space.

f(x) = sign(ωTϕ(x) + b) (6)

SVM for Classification (SVMClass), Support Vector Machines
for Regression (SVR) and SVOR solve a quadratic programming

2Jekabsons G., ARESLab: Adaptive Regression Splines toolbox for Mat-
lab/Octave, 2011, available at http://www.cs.rtu.lv/jekabsons/

3http://wwww.gaussianprocesses.org/gpml

Kernel function type k(x, x′)

Linear xTx′

Radial Basis Function exp(−γ(x− x′)T (x− x′))

Table 2. Kernel functions for SVM. In our experiment, γ was set to
1
67

, 67 being the number of features per sample point.

problem to find the weight vector ω and the constant b. The dif-
ference between the approaches lies in the constraints of the prob-
lem and the form of the decision function. These are detailed in the
following sections.

5.4.1. Support Vector Machines for Classification

To perform 5-class classification with SVM, a one-versus-one ap-
proach was applied. 10 classifiers were learnt, each deciding be-
tween two classes. A new example was assigned the class that was
the most voted for. Ties always favoured the lowest label as pre-
dicting a low IQ instead of a higher one is more critical than the
other way round. The problem solved by each classifier is recalled
in Equation 7. The decision function is the one of Equation 6.

min
ω,b,ξ

1

2
ωTω +

∑
i

ξi

subject to yi(ω
Tϕ(xi) + b) > 1− ξi

ξi > 0 ∀ i (7)

We used the LIBSVM software [37]. As showed in Table 2, two
kernel functions were tested, a linear and a radial basis function. We
only present the results with the radial basis kernel as it performed
better.

5.4.2. Support Vector Machines for Regression

Drucker et. al [38] introduced SVR. The weights of the SVM are
learnt to assure that the absolute value error on each sample is less
than a parameter ϵ as shown in Equation 8.

min
ω,b,ξ,ξ∗

1

2
ωTω +

∑
i

ξi +
∑
i

ξ∗i

subject to ωTϕ(xi) + b− yi < ϵ+ ξi

yi − ωTϕ(xi)− b < ϵ+ ξ∗i

ξi, ξ
∗
i > 0 ∀ i (8)

The prediction for a new example x is f(x) = ωTx + b. LIB-
SVM was used once again for SVR with a radial basis kernel. The
parameter ϵ was set to 0.1.

5.4.3. Support Vector Machines for Ordinal Regression

Ordinal regression or ranking learning aims to build a model to pre-
dict ordinal ranks. SVOR [28] adds constraints so that the order-
ing between the scores are accounted for. The problem solved is in
Equation 9 where j goes from 1 to r − 1 and C > 0. The idea is
to find an optimal weight vector ω as in SVMClass but also r − 1
thresholds bj defining parallel discriminant hyperplanes for the r la-
bels. In short, for each example xj

i (the upperscript j means that
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Manhattan error Euclidean error Spearman’s ρ Cohen’s κ
MLR 0.600± 0.007 0.792± 0.009 0.831± 0.004 0.364± 0.008

MARS 0.608± 0.008 0.799± 0.01 0.821± 0.002 0.368± 0.009
GP 0.593± 0.007 0.853± 0.01 0.833± 0.005 0.408± 0.006

SVR 0.559± 0.007 0.766 ± 0.009 0.837± 0.004 0.414± 0.008
SVOR 0.453 ± 0.005 0.763 ± 0.008 0.842 ± 0.005 0.489 ± 0.006

SVMClass 0.580± 0.009 0.965± 0.01 0.776± 0.004 0.421± 0.005

Table 3. Results of the 10-fold cross validation on the LEGO corpus. 95% confidence interval bounds are provided for each metric.

xj
i belongs to the j-th category), the function value ωTϕ(xj

i ) should
be lower than the lower margin (bj − 1) and each example xj+1

i

should have a function value ωTϕ(xj+1
i ) higher than the upper mar-

gin (bj+1 − 1). More details about this algorithm can be found in
[28].

min
ω,b,ξ,ξ∗

1

2
ωTω + C

r−1∑
j=1

 nj∑
i=1

ξji +

nj+1∑
i=1

ξ∗j+1
i


subject to ωTϕ(xj

i )− bj ≤ −1 + ξji

ξji ≥ 0, for i = 1...nj

ωTϕ(xj+1
i )− bj ≥ 1− ξ∗j+1

i

ξ∗j+1
i ≥ 0, for i = 1...nj+1

bj−1 ≤ bj for j = 2, ..., r − 1 (9)

A new example x is given the label argmini{i | ωTϕ(x) < bi}.
We computed SVOR with a Gaussian kernel using the C program
available at http://www.gatsby.ucl.ac.uk/chuwei/svor.htm.

6. RESULTS

The results of the test are given in Table 3. For the regression tech-
niques, Cohen’s κ coefficient was computed on the rounded predic-
tions made by the models.

Surprisingly, MLR performed quite well on the corpus. Schmitt
et. al applied MLR to the same corpus and after rounding the re-
turned values, they obtained a κ of 0.35 and a ρ of only 0.46. When
we round the values returned by MLR, we obtain a ρ equal to 0.805.
This difference of results should be explained by the features sets
used in both cases. We also believe splitting categorical features
into a set of boolean variables is responsible for this difference. GP
performed better than MLR and MARS except concerning the Eu-
clidean error. Since MLR and MARS minimise this error while GP
does not, this result could be expected. SVR, on the other hand,
performed better than the previously mentioned techniques on all
metrics. A significant improvement can be observed in particular
concerning the Euclidean and Manhattan errors. The results of SVR
are quite good because the constraints on the function value inferred
by SVR imposed a very low absolute error on the samples.

SVOR outperforms all these methods on each metric. A sig-
nificant improvement is done on the Manhattan error and Cohen’s
κ. The Manhattan error is improved of 0.1 point compared to SVR.
Cohen’s κ is improved of 0.06 point compared to SVMClass.

SVMClass has the lowest ranking correlation coefficient. This
supports the fact that classification techniques are not the most ap-
propriate for IQ prediction because they ignore the constraint im-
posed by the order of the labels. Nevertheless, as expected SVM-

Class has the second highest κ coefficient behind SVOR. The classi-
fication performances of SVMClass and SVOR can be further com-
pared thanks to their confusion matrices (Table 4). The results pre-
dicted by SVOR deviated less from the real values than the ones pre-
dicted by SVMClass. For instance, a true 1 was predicted as a 3, a 4
or a 5 88 times with SVOR against 236 times with SVMClass. The
recall and precision for critical values 1 and 2 are also significantly
higher with SVOR.

SVOR T 1 T 2 T 3 T 4 T 5 Precision
P 1 572 99 32 4 1 0.808
P 2 124 145 118 33 1 0.344
P 3 69 236 378 228 23 0.405
P 4 18 76 347 716 359 0.472
P 5 1 1 20 269 1410 0.829

Recall 0.730 0.260 0.422 0.573 0.786
SVMC T 1 T 2 T 3 T 4 T 5 Precision

P 1 541 95 55 27 3 0.719
P 2 57 70 55 23 2 0.183
P 3 98 188 253 164 19 0.313
P 4 81 182 432 626 274 0.440
P 5 7 22 100 410 1496 0.781

Recall 0.690 0.126 0.282 0.501 0.834

Table 4. Confusion matrices for SVOR and SVMClass. T i means
that i is the true value and P i means i is the predicted value.

7. CONCLUSION

This paper suggested ordinal regression to model interaction quality
prediction at a system-user exchange level. Regression and classi-
fication models were tested on a set of evaluated dialogues and it
was shown that ordinal regression provided the best results for each
metric, namely Euclidean and Manhattan errors, Spearman’s rank
correlation coefficient and Cohen’s κ. These good results are ex-
plained by the fact that ordinal regression, unlike standard classifica-
tion or regression, explicitly accounts for the natural ordering of the
interaction quality ratings. Future work will consist of using ordinal
regression on a corpus of annotated dialogues with a reinforcement-
learning based system to infer a reward function from the ratings.
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