Almost-linear time algorithms for operations with triangular sets

Xavier Dahan[⋆], Marc Moreno Maza[†], Adrien Poteaux^{†,•}, Éric Schost[†]

*: Faculty of Mathematics, Kyûshû University

†: Ontario Research Centre for Computer Algebra, University of Western Ontario, London

Background

Triangular set: polynomials in $\mathbb{F}[X_1,\ldots,X_n]$ with a triangular structure

$$\mathbf{T} \mid T_n(X_1, \dots, X_n)$$
 \vdots
 $T_1(X_1).$

 T_i is monic in X_i and reduced modulo $\langle T_1, \ldots, T_{i-1} \rangle$. Here, \mathbb{F} is a perfect field, and all ideals will be radical.

Triangular decomposition of an ideal I: a family of triangular sets $\mathbf{T}^{(1)}, \ldots, \mathbf{T}^{(s)}$ with

$$I = \langle \mathbf{T}^{(1)} \rangle \cap \cdots \cap \langle \mathbf{T}^{(s)} \rangle$$

and, for all $i \neq j$,

$$\langle \mathbf{T}^{(i)} \rangle + \langle \mathbf{T}^{(j)} \rangle = \langle 1 \rangle.$$

Non unique, in general.

Equiprojectable decomposition: a canonical triangular decomposition. Splits according to the cardinality of fibers of projections.

Complexity measure: δ

- for a single **T**, $\delta = \deg(T_1, X_1) \cdots \deg(T_n, X_n)$
- for a triangular decomposition, $\delta = \delta(\mathbf{T}^{(1)}) + \cdots + \delta(\mathbf{T}^{(s)})$.

Previous work

- Triangular sets:
- -Wu, Kalkbrener, Lazard, Aubry, Moreno Maza, etc.
- Equiprojectable decomposition:
- -Aubry, Valibouze (2000)
- -Dahan, Moreno Maza, Schost, Wu, Xie (2005)

Our Problems

Multiplication

• given \mathbf{T} and polynomials A, B reduced modulo \mathbf{T} , compute AB modulo \mathbf{T} .

Quasi-inverse

- given \mathbf{T} and A reduced modulo \mathbf{T} , return:
- -the equiprojectable decomposition $\mathbf{T}^{(1)}, \dots, \mathbf{T}^{(r)}$ of $\langle \mathbf{T}, A \rangle$ (where A vanishes)
- -the equiprojectable decomposition $\mathbf{T}'^{(1)}, \ldots, \mathbf{T}'^{(s)}$ of $\langle \mathbf{T} \rangle$: A^{∞} (where A is invertible), and the inverse of A modulo each $\mathbf{T}'^{(i)}$.

Change of order

- given **T** and a target variable order <':
- -return the equiprojectable decomposition $\mathbf{T}'^{(1)}, \ldots, \mathbf{T}'^{(s)}$ of $\langle \mathbf{T} \rangle$ for the order <',
- -for A reduced modulo $\langle \mathbf{T} \rangle$, compute the image of A modulo each $\mathbf{T}'^{(j)}$, and conversely.

Equiprojectable decomposition

- ullet given a triangular decomposition $\mathbf{T}^{(1)},\ldots,\mathbf{T}^{(r)}$ of an ideal I
- -return its equiprojectable decomposition $\mathbf{T}'^{(1)}, \ldots, \mathbf{T}'^{(s)}$
- -for $A = (A_1, \ldots, A_r)$, with A_i reduced modulo $\langle \mathbf{T}^{(i)} \rangle$, compute the image of A modulo each $\mathbf{T}'^{(j)}$, and conversely.

Previous work

Multiplication:

• Li, Moreno Maza, Schost (2009)

Quasi-inverse:

• Dahan, Moreno Maza, Schost, Xie (2006)

Change of order:

- Boulier, Lemaire, Moreno Maza (2001)
- Pascal, Schost (2006)

Main results

Theorem. For any $\varepsilon > 0$, there exists a constant c_{ε} such that over \mathbb{F}_q , all previous problems can be solved using an expected $c_{\varepsilon} \delta^{1+\varepsilon} \log(q) \log \log(q)^5$ bit operations.

Remarks:

- cost are in a boolean RAM model
- Las Vegas algorithm

Discussion:

- input and output size are $\delta \log(q)$
- multiplication (previous: $4^n \delta \operatorname{polylog}(\delta)$) and quasi-inverse (previous: $K^n \delta \operatorname{polylog}(\delta)$),
- -not an improvement w.r.t. previous work if n is fixed
- -better if each $\deg(T_i, X_i)$ fixed
- change of order, equiprojectable decomposition:
- -first quasi-linear time result

Main ideas: introduce a primitive element, change representation, and solve the problem for univariate polynomials

Previous work

Classical algorithms (subquadratic time)

- Modular composition: Brent, Kung (1978)
- Power projection: Shoup (1994), Kaltofen (2000)

Almost linear time

- In small characteristic: Umans (2008)
- Any finite field: Kedlaya-Umans (2008)