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ABSTRACT
In [12], we sketched a numeric-symbolic method to compute
Puiseux series with floating point coefficients. In this pa-
per, we address the symbolic part of our algorithm. We
study the reduction of Puiseux series coefficients modulo a
prime ideal and prove a good reduction criterion sufficient
to preserve the required information, namely Newton poly-
gon trees. We introduce a convenient modification of New-
ton polygons that greatly simplifies proofs and statements
of our results. Finally, we improve complexity bounds for
Puiseux series calculations over finite fields, and estimate
the bit-complexity of polygon tree computation.

Categories and Subjects Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms; F.2.1 [Analysis
of Algorithms and Problem Complexity]: Numerical Algo-
rithms and Problems.

General Terms: Algorithms, Theory.

Keywords: Puiseux Series, Algebraic Functions, Modular
Methods, Finite Fields, Complexity, Symbolic-Numeric Al-
gorithms.

1. INTRODUCTION
Let K be a number field and F (X,Y ) be a squarefree

bivariate polynomial in K[X,Y ], monic in Y , such that
degY (F ) = d > 1 and degX(F ) = n > 0. Denote by ∆F (X)
the discriminant of F with respect to Y . A root of ∆F

will be called a critical point. The equation F (X,Y ) = 0
defines d algebraic functions of the variable X, which are
analytic in any simply connected domain D ⊂ C free of
critical points. If D is included in a sufficiently small disc
centered at a critical point x0, it is well-known that nu-
merical values of these functions in D can be obtained di-
rectly via truncated Puiseux series at X = x0 (see Section
2). We have used this fact to devise an algorithm to com-
pute the monodromy of the Riemann sphere covering de-
fined by the curve F (X,Y ) = 0 [12], a question that has
numerous applications, including the determination of Ga-
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lois groups, effective versions of Abel-Jacobi’s Theorem [5],
which in turn are useful in various context (see [5, 4]). Un-
fortunately, applying a floating point Newton-Puiseux al-
gorithm (see Section 3) to compute Puiseux series above a
critical point is doomed to failure. Indeed, if the critical
point x0 is replaced with an approximation, expansion al-
gorithms return approximate series with very small conver-
gence discs and do not retain important information, such
as ramification indices. Therefore, the output is not help-
ful. On the other hand, coefficient growth considerably slows
down symbolic methods. Since the degree of ∆F is in O(nd),
Puiseux series coefficients above x0 belong to a finite exten-
sion of K whose degree over K may be in O(d2n). Moreover,
when these coefficients are expressed as linear combination
over Q, the size of the rational numbers involved may also
be overwhelming. Floating point evaluation of such coeffi-
cients must, in some cases, be performed with a high number
of digits because spectacular numerical cancellations occur
(see examples in [12]). Walsh [18] has shown that, for any
ε > 0, the singular part of Puiseux series can be computed
using O(d32+εn4+ε log h2+ε) bit operations where h is the
height of F . Although this bound is probably not sharp, it
is not encouraging and tends to confirm experimental ob-
servations. To alleviate these problems, we introduced a
symbolic-numeric approach : exact important information
is first obtained by means of computations modulo a well
chosen prime number p, then this information is used to
guide floating point computations. The coefficient size is
therefore kept under control while numerical unstability is
reduced. Exact important data, such as ramification indices
and intersection multiplicities of branches, are preserved.
Experimental evidences reported in [12] seem to validate
this approach. This paper presents several contributions :
• Section 3 introduces “generic Newton polygons” and “poly-
gon trees”. The latter concept captures precisely the sym-
bolic information needed for floating point computations.
We explain how polygon trees can be obtained using mod-
ular arithmetic. For this task, generic Newton polygons are
more convenient than classical ones (see Section 4).
• In Section 4, we study modular reduction of Puiseux series
and provide a fully proved and easy to check criterion for
choosing a “good prime”.
• Improved complexity bounds for the computation of ratio-
nal Puiseux expansions over finite fields are given in Section
5. We also deduce bit-complexity estimates for a random-
ized version of the modular part of our symbolic-numeric
method (Section 6).

Because of the lack of space, proofs and many comments



have been omitted. For proofs and details, the reader is
refered to the extended version [13] available on the Internet.

The following notations and well-known facts will be used
throughout the paper :
• If L is a field, L will denote an algebraic closure of L.
• For each positive integer e, ζe is a primitive e-th root of
unity in L. Primitive roots are chosen so that ζbab = ζa.
• vX denotes the X-adic valuation of the fractional power
series field L((X1/e)), normalized with vX(X) = 1. If S ∈
L((X1/e)), we denote by tc(S) the trailing coefficient of S,

namely S = tc(S)XvX(S) + higher order terms.

• If S =
P
k≥l αkX

k/e is an element of L((X1/e)) and r is

a rational number, eSr denotes the truncated power series
eSr =

PN
k=l αkX

k/e where N = max{k ∈ N | k
e
≤ r}.

• The discriminant of a univariate polynomial U is denoted
by ∆U . If U is a multivariate polynomial, the context will
always allow to identify the variable.
• Let f be a polynomial in L[T ] with squarefree factoriza-

tion f =
Qr
i=1 f

ki
i . We associate to f the partition of deg f

denoted [f ] = (kdeg f1
1 . . . kdeg fr

r ). Namely, the multiplicity
ki is repeated deg fi times in the decomposition of deg f .
• If H ∈ L[X,Y ], then HX and HY are the formal partial
derivatives of H.
• For H(X) =

P
k αkX

k ∈ C[X] = C[X1, . . . , Xn], where k

is a multi-index, we denote ‖H‖∞ = maxk{|αk|}.

2. PUISEUX SERIES
We need to state results over more general fields than K.

Throughout this section, L denotes a field of characteristic
p ≥ 0 and F belongs to L[X,Y ]. Otherwise, we keep the
assumptions and notations of Section 1. We also impose the
condition :

p = 0 or p > d = degY (F ) (1)

After a change of variable X ← X+x0, we may assume that
the critical point is X = 0.

2.1 Classical Puiseux series
In this part, we review classical results about Puiseux se-

ries. We begin with :
Theorem 1 (Puiseux). Let H be a squarefree polyno-

mial of L[X,Y ] such that degY (H) = d > 0. If condition (1)
is satisfied, there exist positive integers e1, . . . , es satisfyingPs
i=1 ei = d such that H, viewed as a polynomial in Y , has

d distinct roots in L((X)) which can be written :

Sij(X) =
X

k

αik ζ
jk
ei X

k
ei

for 1 ≤ i ≤ s and 0 ≤ j ≤ ei − 1. Moreover, the set of coef-
ficients {αik} is included in a finite algebraic extension of L.

Definition 1. The d fractional Laurent series above are
called Puiseux series of H above 0. The integer ei is the
ramification index of Sij. If ei > 1, then Sij is ramified.
If Sij ∈ L[[X1/ei ]], we say that Sij is defined at X = 0. If
Sij(0) = 0, we say that Sij vanishes at X = 0.

An arbitrary number of terms of all Puiseux series can be
effectively computed using the Newton-Puiseux algorithm
(see Section 3). For each positive integer e ≤ d, hypothesis

(1) implies that the Galois group Ge of L((X1/e))/L((X))

is cyclic and generated by : X1/e 7→ ζeX
1/e. Hence, Gei

permutes cyclically the elements of Si = {Sij(X)}0≤j≤ei−1.

Definition 2. We call Si a cycle of H above 0. If an
element of Si (thus, all elements) vanishes at X = 0, we
say that the cycle vanishes at X = 0.
Since the Sij (0 ≤ j ≤ ei − 1) can be quickly recovered
from any element of Si, it is sufficient for our purposes to
compute a set of representatives for the cycles of H.

Definition 3. The regularity index rij of Sij in H is the

least integer N such that fSij
N
ei = gSuv

N
ei implies (u, v) =

(i, j). The truncated series fSij
rij
ei is called the singular part

of Sij in H.
In other words, rij is the smallest number of terms necessary
to distinguish Sij from the other Puiseux series above 0. It
is worth noting that rij depends not only on Sij , but also
on H since H is not assumed irreducible in L[X,Y ].

If the singular part of a Puiseux series is known, a change
of variable yields a bivariate polynomial for which remaining
terms of the series can be computed “fast” using quadratic
Newton iterations [11, 17]. Newton iterations can be applied
to series with floating point coefficients, therefore we focus
on the computation of the singular parts of the Sij . Since it
can be shown that all elements of a cycle Si have the same
regularity index, that we denote ri, the problem reduces to
the determination of the singular part of a representative of
Si for 1 ≤ i ≤ s.

2.2 The characteristic of a Puiseux series
We derive relations between the discriminant of F and

particular coefficients of its Puiseux series that we shall
use to define a “good reduction” criterion. Let S(X) =P∞
i=0 αiX

i/e denote a Puiseux series of F with ramification
index e > 1. We define a sequence (B0, R0), . . . , (Bg, Rg) of
integer pairs as follows : (B0, R0) = (0, e), and for j > 0, if
Rj−1 > 1 we set Bj = min {i > Bj−1 | αi 6= 0 andRj−1 - i}
and Rj = gcd(Bj , Rj−1). If Rj−1 = 1, we stop and set
g = j − 1. Note that g ≥ 1 and Rg = 1.

Finally, we set Qj = Rj−1/Rj , Mj = Bj/Rj (1 ≤ j ≤ g)
and define Hj to be the largest nonnegative integer such
that Bj + HjRj < Bj+1 for 0 ≤ j ≤ g − 1. It is clear that
e = Q1Q2 · · ·Qg and Mj is an integer prime to Qj .

With these notations, and up to a new indexing of the
coefficients, S can be written in the form :

S(X) =
PH0
j=0 α0,jX

j

+ γ1X
M1
Q1 +

PH1
j=1 α1,jX

M1+j
Q1

+ γ2X
M2
Q1Q2 +

PH2
j=1 α2,jX

M2+j
Q1Q2

+ · · · + · · ·
+ γgX

Mg
Q1Q2···Qg +

P∞
j=1 αg,jX

Mg+j

Q1Q2···Qg

In the expression above, the monomials of S are ordered
by increasing (rational) degree.

Definition 4 ([19, 1]). The characteristic of S is the
tuple of integers (e;B1, . . . , Bg). The characteristic coeffi-
cients are the elements of (γ1, . . . , γg) and the characteristic
monomials are the corresponding monomials of S.

Proposition 1. Assume that hypothesis (1) is satisfied.
Let G(X,Y ) be the minimal polynomial over L((X)) of a

ramified Puiseux series S ∈ L[[X1/e]] as above. Then :

• tc(∆G) = ±
“Qg

i=1 Q
Ri
i

Qg
i=1 γ

Ri−1−Ri
i

”e

• vX(∆G) =
Pg
i=1 Bi(Ri−1 −Ri).



2.3 Rational Puiseux expansions
In order to perform computations in the smallest possible

extension of L and to take advantage of conjugacy over L,
Duval introduced the notion of “rational Puiseux expansions
over L” [6]. This arithmetical concept is irrelevant in the
context of floating point computations, but will prove useful
for expansions over finite fields.

Definition 5. Let H be a polynomial in L[X,Y ] with
degY H > 0. A parametrization R(T ) of H is a pair of
non constant power series R(T ) = (X(T ), Y (T )) ∈ L((T ))2

such that H(X(T ), Y (T )) = 0 in L((T )). The parametriza-
tion is irreducible if there is no integer u > 1 such that
R(T ) ∈ L((Tu))2. The coefficient field of R(T ) is the exten-
sion of L generated by the coefficients of X(T ) and Y (T ).

Assume for a moment that H is irreducible in L[X,Y ] so
that K = L(X)[Y ]/(H) is an algebraic function field. A
parametrization R(T ) = (X(T ), Y (T )) induces a field mor-
phism :

φR : K → L((T ))
f(X,Y ) 7→ f(X(T ), Y (T ))

Composing φR with the valuation vT of L((T )), we obtain
a valuation of K that we denote again by vT . It is easily
seen that the set PR = {f ∈ K | vT (f) > 0} is a place of
K in the sense of [2] and that VR = {f ∈ K | vT (f) ≥ 0}
is the corresponding V-ring of K. We recall that PR is the
unique maximal ideal of VR and that the residue field of PR

is VR/PR, which can be viewed as a finite algebraic exten-
sion of L. Therefore, we obtain a mapping Ψ from the set
of parametrizations of F onto the set of places of K. Recip-
rocally, to each place P of K correspond a parametrization
of H. Let us denote by {Pi}1≤i≤r the places of K dividing
X and by ki the residue field of Pi.

Definition 6 (Rational Puiseux expansions).
• Assume that H is irreducible in L[X,Y ]. A system of
L-rational Puiseux expansions above 0 of H is a set of irre-
ducible parametrizations {Ri}1≤i≤r of the form :

Ri(T ) = (Xi(T ), Yi(T )) = (γiT
ei ,
X

k

βikT
k) ∈ L((T ))2

with ei > 0 such that :
(i) Ψ is one-to-one from {Ri}1≤i≤r to {Pi}1≤i≤r. We as-
sume that the Pi are numbered so that Pi = PRi = Ψ(Ri).
(ii) The coefficient field of Ri is isomorphic to ki.
• Assume that H is squarefree. A system of L-rational
Puiseux expansions above 0 of H is the union of systems
of L-rational Puiseux expansions for the irreducible factors
of H in L[X,Y ].

Definition 7. If Yi ∈ L[[T ]], we say that Ri is defined
at T = 0 and call (Xi(0), Yi(0)) the center of Ri.

The classical formula relating degrees of residue fields and
ramification indices of an algebraic function field (see [2])
translates into :

Theorem 2. Let H be squarefree polynomial of L[X,Y ],
degY H = d > 0 and {Ri}1≤i≤r be a system of L-rational
Puiseux expansions above 0 for H. If fi denotes the degree
over L of the coefficient field of Ri, then

Pr
i=1 ei fi = d.

Classical Puiseux series can readily be deduced from a sys-
tem of rational Puiseux expansions (see [13]). Classical
Puiseux series that are defined at X = 0 (resp. that vanish
at X = 0) correspond to rational Puiseux expansions de-
fined at T = 0 (resp. centered at (0, 0)). Moreover, we note
that regularity indices for all Puiseux series corresponding to
the same rational Puiseux expansion are equal. Therefore,
we define the singular part of a rational Puiseux expansion
Ri to be the pair

`
γiT

ei ,
Pri
k=−∞ βikT

k
´
, where ri is the

regularity index of a Puiseux series associated to Ri.
Since our initial polynomial F is monic, rational Puiseux

expansions of F above zero are all defined at T = 0.

3. NEWTON-PUISEUX ALGORITHM
We describe an algorithm to compute singular parts of

rational Puiseux expansions. We also briefly recall how to
compute classical Puiseux series. Throughout Section 3, L
denotes again a field of characteristic p ≥ 0 and F ∈ L[X,Y ]
is a polynomial such that condition (1) is satisfied. More-
over, we keep assumptions and notations of Section 1.

Newton polygons and characteristic polynomials are the
crucial tools. We first recall well-known definitions and in-
troduce a variant that will prove more convenient and pow-
erful.

3.1 Generic Newton polygons
Assume that H(X,Y ) =

P
i,j aijX

jY i is a polynomial of

L[[X]][Y ] such that H(0, Y ) 6= 0.

Definition 8. Denote by I(H) the nonnegative integer
vY (H(0, Y )) and by H the convex hull of Supp(H) = {(i, j) ∈
N2 | aij 6= 0}. The Newton Polygon N (H) of H is the lower
part of H. Namely :
• If H(X, 0) 6= 0, N (H) is formed by the sequence of edges
of H closest to the origin and joining (0, vX(H(X, 0))) to
(I(H), 0),
• If H(X, 0) = 0, (0, vX(H(X, 0))) is replaced by the left-
most point of H with smallest j-coordinate.

We introduce a slightly different object, that we call generic
Newton polygon for reasons explained in [13]. This varia-
tion allows a homogeneous treatment of finite series, clearer
specifications for the algorithms and simplifies wording and
proofs of results regarding modular reduction.

Definition 9. The generic Newton polygon GN (H) is
obtained by restricting N (H) to edges with slope no less than
−1 and by joining the leftmost remaining point to the vertical
axis with an edge of slope −1.

In other words, we add a fictitious point (0, j0) to Supp(H)
so as to mask edges with slope less than -1.

Example 1. Consider H1(X,Y ) = Y 7 +X2Y 2 +XY 4 +
X6 +X2Y 3 +XY 5 +X4Y 3. In Figure 1, the support of H1

is represented by crosses, GN (H1) is drawn with plain lines
and the masked edge of N (H1) with a dotted line.

Example 2. Consider H2(X,Y ) = Y 8+3X2Y 3+XY 5+
2X6 + 4X3Y 2 +X2Y 5 +X4Y 3 and Figure 1. The edge with
slope -1 is prolongated until the vertical axis.

Example 3. Assume that H3(X,Y ) = Y . The classical
polygon N (H3) is the trivial polygon (1, 0). But GN (H3) is
formed of a unique edge joining (0, 1) to (1, 0).
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Figure 1: Generic versus classical polygons

Remark 1. Mark Van Hoeij pointed out to us that his
implementation of the Newton-Puiseux algorithm, available
since Maple V.5 (algcurves[puiseux]), implicitely uses the
concept of generic polygons. His motivation was to improve
efficiency : At each recursive step, it is possible to com-
pute modulo a well-chosen power of X so as to precisely
obtain the generic polygon of the next step. This code is
used to compute integral bases [16], but the implementation
technique has not been published. In essence, Van Hoeij’s
implementation uses “local truncation orders”, while Propo-
sition 6 can be viewed as a “global truncation order”. The
latter allows to obtain complexity bounds. While local trun-
cation orders may prove more efficient in practice, it is not
clear that they lead to a better asymptotic behaviour.

The algorithm first stage requires a special treatment. To
this effect, we introduce the following definition :

Definition 10. The exceptional Newton polygon EN (H)
is the unique horizontal edge [(0, 0), (degY H(0, Y ), 0)].

In particular, EN (F ) = [(0, 0), (d, 0)] since F is monic. To
an edge ∆ of GN (H) (or N (H), EN (H)) correspond three
nonnegative integers q, m and l with q and m coprime such
that ∆ is on the line q j + mi = l. If ∆ is the horizontal
edge of EN (H), m = l = 0 and we choose q = 1.

Definition 11. We define the characteristic polynomial

of ∆ as φ∆(T ) =
X

(i,j)∈∆

aijT
i−i0
q , where i0 is the smallest

value i such that (i, j) belongs to ∆.

Note that if N (H) is used, φ∆(T ) cannot vanish at T = 0,
while GN (H) allows such cancellation if ∆ is a fictitious edge
(or contains a fictitious part). In this case, the multiplicity
of 0 as a root of φ∆(T ) is the length of the fictitious edge
(or portion of the fictitious edge) added. For EN (H), 0 can
also be a root of the characteristic polynomial.

The algorithm below performs successive changes of vari-
able, determined by (q,m, l) and the roots of φ∆. It returns
a set of triplets {(Gi(X,Y ), Pi(X), Qi(X,Y ))}i such that :
• Gi, Pi, Qi ∈ L[X,Y ],
• Pi(X) is a monomial of the form λiX

ei ,
• Qi(X,Y ) = Qi0(X) + Y Xri , where ri is the regularity
index of the expansion and (Pi(T ), Qi0(T )) is the singular
part of a parametrization of F ,
• There exist nonnegative integers Li such that Gi(X,Y ) =
F (Pi(X), Qi(X,Y ))/XLi , Gi(0, 0) = 0 and GiY (0, 0) 6= 0.

3.2 Rational Newton-Puiseux algorithm
We present an algorithm due to Duval to compute singular

parts of rational Puiseux expansions above 0 [7]. We also
give differences between this algorithm and the classical one.
We need two auxiliary algorithms, for which we only provide
specifications :

Factor(L,φ)

Input: L : A field.
φ : A univariate polynomial in L[T ].

Output: A set of pairs {(φi, ki)}i so that φi is

irreducible in L[T ] and φ =
Q
i φ

ki
i .

Bezout(q,m)

Input: q,m : Two coprime positive integers.

Output: A pair of integers (u, v) so that uq −mv = 1.
If q = 1, enforce v = 0 and u = 1.

Algorithm RNPuiseux(L,H)

Input: L : A field.
H : A squarefree polynomial of degree d ≥ 1

in L[X,Y ], such that H(0, Y ) 6= 0.

Output: A set of triplets {[Gi, Pi, Qi]}i, which form a
set of representatives for :
- L-rational Puiseux expansions of H defined
at T = 0 for the initial call,
- L-rational Puiseux expansions of H centered
at (0, 0) for recursive calls.

Begin

If in a recursive call then

P ← GN (H)
If I(H) = 1 then Return {[H,X, Y ]} End

else

P ← EN (H)
End

R ← {}
For each side ∆ of P do

Compute q, m, l and φ∆

(u, v)← Bezout(q,m)
For each (f, k) in Factor(L, φ∆) do

ξ ← Any root of f
H ′(X,Y )← H(ξvXq, Xm(ξu + Y ))/X l

For each [G,P,Q] in RNPuiseux(L(ξ), H ′) do

R ← R ∪ {[G, ξv P q, Pm(ξu +Q)]}
End

End

End

Return R
End.

Replacing L by L and (u, v) by (1/q, 0) in RNPuiseux, one
obtains the classical algorithm, that we call CNPuiseux.

Example 4. Let F (X,Y ) = (Y 2−2X3)(Y 2−2X2)(Y 3−
2X) ∈ Q[X,Y ]. Applying RNPuiseux over Q yields three
expansions :

(P1, Q1) = (2X2, X0(0 + 2X2(0 +X(2 + Y ))))

= (2X2, 4X3 + 2X3Y )

(P2, Q2) = (4X3, X0(0 +X(2 + Y )))

= (4X3, 2X + 2XY )

(P3, Q3) = (X,X0(0 +X(
√

2 + Y )))

= (X,
√

2X +XY )



The first two expansions have residue field Q and ramifi-
cation index 2 and 3. The third one corresponds to a place
with residue field isomorphic to Q(

√
2). Applying RNPuiseux

over Q(
√

2) will result in one more expansion :

(P4, Q4) = (X,X0(0 +X(−
√

2 + Y )))

= (X,−
√

2X +XY ).

The first null coefficient of (P1, Q1) comes from the excep-
tional polygon [(0, 0), (0, 7)]. The second one corresponds to
the fictitious edge of GN (F ) introduced at the first recursive
call. This may seem inefficient, but it has no impact on the
complexity and clarifies arguments in Section 4.

3.3 Polygon trees
To a function call RNPuiseux(L, F ) (see Section 3.2), we

associate a labelled rooted tree. By definition, the depth of
a vertex v is the number of edges on the path from the root
to v. In particular, the root vertex has depth 0. The tree is
constructed recursively from the root vertex as follow (see
Figure 2 ). Even depth vertices correspond to function calls.
• A vertex v of even depth l is labelled with the polygon P,
that is EN (H) for the root vertex (l = 0), and GN (H) for
recursive calls (l > 0).
• To each ∆ of P corresponds an edge from v to a depth
l+ 1 vertex. Label the edge with ∆ (represented by its end-
point).
• A child (depth l + 1 vertex) is labelled with the corre-
sponding integer partition [φ∆] (see the end of Section 1).
• To each choice of root ξ of φ∆ made by the algorithm cor-
responds an edge from a depth l+ 1 vertex to a depth l+ 2
vertex. The edge is labelled with the pair (k, f), where k is
the multiplicity of ξ of and f = [L(ξ) : L].
• Then, we proceed recursively : A depth l + 2 vertex is
the root vertex of the tree corresponding to the function
call RNPuiseux(L(ξ), H ′) where H ′ is the polynomial H ′

obtained for a choice of edge ∆ and a choice of root ξ.

∆ = ((0, 5), (4, 1))

P = ((0, 5), (4, 1), (7, 0))

(2, 12)(1)

(1, 1) (2, 1) (1, 2)

∆ = ((0, 1), (2, 0))

(1, 1)

P = ((0, 1), (2, 0)) PhPh

∆ = ((4, 1), (7, 0))

(1)

Ph

(7, 1)

∆ = ((0, 0), (7, 0))

P = ((0, 0), (7, 0))

(7)

Figure 2: Polygon tree RT (Q, F ) for Example 4.

The leaves are even depth vertices labelled with polygons
that have only one side Ph = [(0, 1), (1, 0)]. Note that the
roots ξ are not part of the tree. Since the squarefree factor-
ization is a subproduct of the factorization over L, the la-
belled tree can be obtained at no significant cost. If l is the
depth of the function call tree generated by RNPuiseux(L,
F ), then the labelled tree constructed has depth 2l.

For a function call CNPuiseux(F ), we define a similar tree,
but in this case, an edge from a partition to a polygon is only
labelled with a multiplicity k because the ground field is L
and all field extension have degree 1.

Definition 12. We denote by RT (L, F ) (resp. T (F )) a
tree associated to the function call RNPuiseux(L,F ) (resp.
CNPuiseux(F )). In both cases, the tree is called the polygon
tree associated to the function call.

It turns out that T (F ) is precisely the symbolic informa-
tion required to achieve our goal.

Proposition 2. The tree T (F ) can easily be obtained
from RT (L, F ) as follow : duplicate f times each edge la-
belled (k, f) (together with the subtree rooted at this edge)
and replace the tag (k, f) by the tag k.

4. GOOD REDUCTION
We consider a polynomial F with coefficients in an alge-

braic number field K and discuss how to choose a prime
number p so that the computation of rational Puiseux ex-
pansions modulo p provides enough information to guide
floating point computations of Puiseux series, namely T (F ).

We denote by o the ring of algebraic integers of K, p a
prime ideal of o and vp the corresponding valuation of K.
Finally, we define : op = {α ∈ K | vp(α) ≥ 0}.

Let L be the finite extension generated over K by the
Puiseux series coefficients of F . Note that L also contains
the coefficients of rational Puiseux expansions computed by
RNPuiseux. If O stands for the ring of algebraic integers of
L and P for a prime ideal of O, we introduce OP = {α ∈
L | vP(α) ≥ 0}.

In the sequel, P will always denote a prime ideal of O
dividing p. The reduction modulo P of α ∈ OP is repre-
sented by α. We extend this notation to polynomials and
fractional power series with coefficients in OP. If α ∈ op,
since P divides p, reduction modulo P and p coincide and
we shall use the same notation α.

4.1 Modular reduction of Puiseux series
Our reduction strategy is based on the following defini-

tion :

Definition 13. Let p be a prime number and p a prime
ideal of o dividing p. We say that F has local (at X = 0)
good reduction at p if : F ∈ op[X,Y ], p > d = degY (F )
and vp(tc(∆F )) = 0.

Note that if F has local good reduction at p and P divides
p, then vP(tc(∆F )) = 0, and so has F at P. We shall use
this fact freely in the sequel.

Remark 2. Applying our local criterion to all places of
K[X], we obtain that [∆F ] must be equal to [∆F ] (preser-
vation of the squarefree factorization). This test has been
used by the second author as a genus preservation condition



(good reduction, in a classical sense) in his implementation
of Trager’s algorithm for the integration of algebraic func-
tions [15], publicly avalaible since Maple V.5. This condi-
tion was derived from proofs in ([9], Section III.6), using
elementary considerations. This test was also brought to
the attention of the Computer Algebra community by Trager
(unpublished document), as a consequence of a more sophis-
ticated theorem by Fulton [10].

A fundamental result for the reduction strategy is the fol-
lowing consequence of a theorem by Dwork and Robba [8] :

Theorem 3. If F has local good reduction at p, then the
Puiseux series coefficients of F above 0 are in OP.

We emphasize that this result holds for any P dividing p.

Example 5. Consider the case F (X,Y ) = Y 2 −X3(p+
X) with p > 2. Puiseux series above 0 are :

S1j(X) = (−1)j
√
pX3/2

„
1 +

X

p

«1/2

= (−1)j
√
pX3/2(1 +

X

2 p
− X2

8 p2
+ · · · ).

They are obviously not reducible modulo p, but the discrim-
inant criteria of the theorem detects this deficiency.

Theorem 4. Let {Si}1≤i≤s be a set of representatives for
the cycles of F above 0. Assume that F has local good re-
duction at p. Then, {Si}1≤i≤s is a set of representatives for
the cycles of F above 0.

However, annihiliation modulo P of Puiseux series coeffi-
cients is not totally controlled by our good reduction crite-
rion. If F is irreducible in K[[X]][Y ], all non-characteristic
coefficients may vanish modulo P, as shown by Proposition
1 (consider for instance the minimal polynomial over Q(X)

of S(X) = pX +X3/2). If F is not irreducible, our criterion
will also detect cancellation of coefficients that “separate”
cycles. This property is contained in Theorem 5.

4.2 Modular reduction of polygon trees
If F ∈ op[X,Y ] and p > d, algorithms of Section 3 can

be applied to the reduction F of F modulo p, so that the
notations T (F ) and RT (Fpt , F ) make sense. The computed
expansions have coefficients in a finite extension of Fp.

The following result is crucial. It allows to obtain by
means of modular computations the symbolic information
required by the numerical algorithm in [12] :

Theorem 5. If F has local good reduction at p, then :
T (F ) = T (F ).

The correspondence between T (F ) and T (F ) cannot be
stated so simply if classical polygons are used instead of
generic ones : Non-characteristic coefficients of Puiseux se-
ries may vanish upon modular reduction, yielding polygon
modifications. Moreover, if the exceptional polygon is re-
placed by the generic polygon, the good reduction criterion
does not detect the cancellation of F (0, 0), as shown by the
example F (X,Y ) = (Y + p + X)(Y + 1 + X). But the cri-
terion detects a change of root multiplicities. This example
justifies the introduction of EN (F ).

4.3 Choosing a good prime
This part is devoted to the choice of a prime ideal p such

that F has local good reduction at p.
Assume that K = Q(γ) and let Mγ be the minimal poly-

nomial of γ over Q. The elements of K are represented as
polynomials in γ of degree less than w = [K : Q] with co-
efficients in Q. Up to a change of variable in Mγ and the
coefficients of F , we suppose that γ belongs to o, namely
Mγ ∈ Z[T ].

Definition 14. Let P be a multivariate polynomial of
K[X]. There exists a unique pair (H, c) with H ∈ Z[T,X],
c ∈ N, degT (H) < w and P (X) = H(γ,X)/c, where c is
minimal. The polynomial H is called the numerator of P
and is denoted num(P ). The integer c is called the denomi-
nator of H and is written denom(P ). We define the size of
P as follow : ht(P ) = max{log2 c, log2 ‖R‖∞}.

Denoting Fn = num(F ) and b = denom(F ), we have

F (X,Y ) = Fn(γ,X,Y )
b

. We are left with the problem of find-
ing a prime number p and a prime ideal p of o dividing p
such that :
(C1) p > d.
(C2) p does not divide b.
(C3) We can determine an explicit representation of a prime
ideal p of o dividing p, so that a morphism o → o/p ∼= Fpt
can be effectively computed.
(C4) tc(∆F ) 6≡ 0 modulo p.

Condition (C1) and (C2) are easily checked out. We deal
with condition (C3) in a standard fashion. Let M be any
irreducible factor of Mγ in Fp[T ] and M be a lifting of M
in Z[T ]. It is well-known that if p is a prime number not
dividing the index eγ = [o : Z(γ)] and if M is any irreducible
factor of Mγ in Fp[T ], then the ideal p = (p,M(γ)) of o is
prime [3]. Hence, elements of o can be reduced by means
of the morphism o → o/p ∼= Fp[T ]/(M) ∼= Fpt , where t =

degM . Computing eγ is a non-trivial task, and so is the
computation of generators of prime ideals dividing p when
p divides eγ . If eγ is unknown, it is sufficient to choose p so
that it does not divide ∆Mγ , since eγ divides ∆Mγ .

In practice, M is chosen amongst the factors of Mγ of
smallest degree. Moreover, it is worth trying a few primes p
in order to reduce t, the case t = 1 being the most favorable.

As for (C4), deterministic and randomized strategies are
studied in the next subsections. In order to simplify the
analysis, we replace condition (C4) by the following stronger
condition :
(C ′4) NormK/Q(tc(∆F )) 6≡ 0 modulo p.

If (C1) to (C ′4) are verified, then for all prime ideals p divid-
ing p, F has local good reduction at p. In practice, though,
we do not recommand to use (C ′4). Finally, we introduce the
notation NF = b · |NormK/Q(tc(∆F ))| · |∆Mγ |. Conditions
(C1) to (C ′4) are equivalent to :
(C5) p > d and NF 6≡ 0 modulo p.

4.3.1 Deterministic strategy
We determine a bound B such that, for all prime numbers

p > B, condition (C5) is satisfied. We first give two lemmas :

Lemma 1. The discriminant ∆Fn ∈ Z[X,T ] of Fn with
respect to Y satisfies :

‖∆Fn‖∞ ≤ (2d− 1)! dd [(w + 1)(n+ 1)]2d−2 ‖Fn‖2d−1
∞ .



We denote by RF (T ) the numerator of tc(∆F ). Note that
denom(tc(∆F )) is a power of b dividing b2d−1.

Lemma 2. Define :
B0 = ‖∆Fn‖∞(‖Mγ‖∞ + 1)(w−1)(2d−1)−w+1,

B1 = (w + 1)(2w−1)/2‖Mγ‖w−1
∞ Bw0 ,

B2 = ww(w + 1)(2w−1)/2‖Mγ‖2w−1
∞ .

Then, |NormK/Q(RF (γ))| ≤ B1 and eγ ≤ |∆Mγ | ≤ B2.

Proposition 3. Set B = max {b, d+ 1, B1, B2}. Then,
for all p > B, condition (C5) is verified. Moreover, there
exists a prime p > B with size ht(p) in :

O(wd(w ht(Mγ) + ht(F ) + log (wnd))).

4.3.2 Probabilistic strategies
We begin with a “Monte-Carlo” method, best described

by the following algorithm. We need two auxiliary proce-
dures : The function call RandomPrime(A,C) returns a ran-
dom prime number in the real interval [A,C]. We assume
that the primes returned are uniformly distributed in the
set of primes belonging to [A,C] (see [14], Section 7.5). The
function Nextprime gives the smallest prime larger than the
argument.

MCGoodPrime(d,B′,ε)
Input: d : The degree in Y of the polynomial F .

B′ : A real number such that prime factors
of NF are less or equal to B′.

ε : A real number with 0 < ε ≤ 1.

Output: A prime number p satisfying (C5) with
probability at least 1− ε.

Begin

If B′ < 100 then Return NextPrime(B′) End

K ← 6 lnB′/(ε ln lnB′) + 2d/ ln d
C ← max {2d,K(lnK)2}
Return RandomPrime(d+ 1, C)

End.

Proposition 4. MCGoodPrime(d, B′, ε) returns a prime
p satisfying ht(p) ∈ O(log logB′+ log d+ log ε−1). In partic-
ular, if B′ = max {b,B1, B2} (see Lemma 2), then : ht(p) ∈
O(log (dw logn)+log ht(F )+log ht(Mγ)+log ε−1). The prob-
ability that p does not satisfy (C5) is less than ε.

Finally, we consider a “Las Vegas” flavoured method :

LVGoodPrime(F,Mγ)

Input: F : A polynomial as in Section 1.
Mγ : A monic irreducible polynomial in Z[T ].

Output: A prime number p satisfying (C5).
Begin

d← degY (F )
NF ← denom(F ) · |NormK/Q(RF (T ))| · |Disc(Mγ)|
B′ ← max {denom(F ), |NormK/Q(RF (T ))|, |Disc(Mγ)|}
Repeat

p← MCGoodPrime(d,B′, 1/2)
until p does not divide NF End

Return p
End.

Proposition 5. LVGoodPrime(F ,Mγ) returns a prime p
satisfying ht(p) ∈ O(log (dw log n) + log ht(F ) + log ht(Mγ))
and (C5) with an average number of iterations less than 2.

The computation of B′ and NF may have a significant
cost. In our monodromy context [12], though, we need to
determine ∆F anyway.

5. COMPLEXITY OVER A FINITE FIELD
In this section, L denotes a finite field and F belongs to

L[X,Y ]. Otherwise, we keep the notations and assumptions
of Section 1. We denote by p > d the characteristic of L.
We also define t0 = [L : Fp]. This section is devoted to the
proof of the following theorem :

Theorem 6. Assuming that FFT-based polynomial mul-
tiplication over finite fields is used, RNPuiseux can compute
singular parts of a system of rational Puiseux expansions
above 0 of F in O (̃d3n2 + d2nt0 log p) field operations in L.

As usual, the notation Õ hides logarithmic factors.

Remark 3. This result improves the bound of [7], which
is in O(d6n2) field operations. Our estimates include fac-
torization cost, while Duval relies on the D5 system to avoid
factorizations. The gain comes from :
- truncation of powers of X in the course of the algorithm
(see Proposition 6),
- reducing transformations to shifts of univariate polynomi-
als, for which fast methods are available (Proposition 7),
- a bound for δF (see below and Proposition 9).

We first introduce notations and make some assumptions :
• {Ri}1≤i≤ρ with Ri(T ) = (Xi(T ), Yi(T )) stands for singu-
lar parts of a system of rational Puiseux expansions,
• (ri, ei, fi), 1 ≤ i ≤ ρ are respectively the regularity index,
the ramification index and the coefficient field degree over
L of Ri.
• For each rational Puiseux expansion Ri, we can deduce
eifi Puiseux series denoted Sijk(X), 1 ≤ k ≤ ei, 1 ≤ j ≤ fi.
• We define δF =

Pρ
i=1 firi.

• Lt denotes an extension of degree t of L.
• M(N) will denote the number of field operations in Lt
needed to compute the product of two polynomials in Lt[Z]
of degree no larger than N . We recall that M(N) ∈ O(N 2)
for classical arithmetic and M(N) ∈ O(N logN log logN) ⊂
Õ (N) if FFT-based multiplication is used.
• A field operation in Lt can be done using O(M(t) log t)
field operations in L.
We refer the reader to [17] for assertations regarding the
complexity of operations over finite fields.

Remark 4. It is worth noting that δF represents essen-
tially the number of elements of L necessary to represent the
Yi. Indeed, each Yi has at most ri + 1 nonzero coefficients
and each of those may be represented by at most fi elements
of L. Assume that a dense representation is used for the
truncated power series Yi (for instance, a vector of ri + 1
elements of Lfi) and assume in turn that the coefficients of
Yi are represented by vectors of fi elements of L. Then, the
size of the output is δF +

P
i fi, which is bounded from below

by δF and bounded from above by δF + d.

We split the proof into several results.

Proposition 6. Systems of rational Puiseux expansions

for F and eF δF above 0 have the same singular parts (up
to trivial changes of the parameter T ). Moreover, singular
parts of rational Puiseux expansions of F can be computed

by applying RNPuiseux to eF δF and truncating polynomials
H modulo XδF+1 at each stage of the algorithm.

Proposition 7. The substitutions needed to compute the
singular parts of a system of rational Puiseux expansions of
F requires O

`
δ2
FM(d)2 log d

d

´
field operations in L.



Proposition 8. All factorizations of characteristic poly-
nomials required by RNPuiseux can be computed with an ex-
pected number of O

`
δF log d

ˆ
M(d2) + t0 log pM(d) log d

˜´

field operations in L.

It is interesting to bound first the number of operations in
L in terms of the output size, namely δF .

Theorem 7. The number of operations in L required to
compute singular parts of rational Puiseux expansions of F

above 0 is in Õ
“
δFM(d)

h
δF

M(d)
d

+M(d) + t0 log p
i”

.

Proposition 9. δF ≤ vX(∆F ) ≤ n(2d− 2)

Theorem 6 is now a trivial consequence of the last two
results.

6. BIT-COMPLEXITY
Let F be a polynomial of K[X,Y ], where K is an algebraic

number field represented as in Section 4.3. We recall that
[K : Q] = w. We study the bit-complexity of the computa-
tion of T (F ). We estimate only word operations generated
by arithmetic operations in various coefficient fields. Assum-
ing some care is taken in the implementation, (for instance,
access to coefficients of polynomial should be achieved in
constant time), results below should give a realistic upper
bound for the behaviour of an actual computer program.

Our bounds for randomized algorithms do not include the
cost of generating prime numbers, nor the cost of computing
bounds given by our formula.

We assume that elements of Fp are represented by nonneg-
ative integers. In order to simplify expressions, we assume
that fast arithmetic is used for integer arithmetic as well as
polynomial arithmetic over finite fields.

Theorem 8. Given ε with 0 < ε ≤ 1, there exists a prob-
abilistic Monte Carlo algorithm that computes T (F ) with
an expected number of Õ (d3n2w2 log2 ε−1[ht(Mγ) + ht(F )])
word operations and probability of error less than ε.

7. CONCLUSION
This paper summarizes the results we have obtained in

[13] regarding the symbolic part of our program towards
a fast and reliable method to compute Puiseux series with
floating point coefficients. In particular, the criterion en-
suring preservation of polygon trees is essential. Along the
path, we have derived improved complexity bounds for com-
putations over finite fields. Although not optimal, these
bounds are quite reasonable, i.e. quadratic in the output
size, up to a factor d. Bit-complexity estimates for the
Monte-Carlo version of the first step of our symbolic-numeric
method confirm that the coefficient growth of pure symbolic
Newton-Puiseux algorithm is avoided. Complexity bounds
for the Las Vegas and deterministic version can be obtained
similarly. Applying our reduction criterion for all places
of K[X] provides analogous bit-complexity bounds for the
computation of the genus of an algebraic curve defined over
an algebraic number field.

We are actively working on the numerical part of the al-
gorithm, and in particular on error control, as well as on an
improved implementation of both parts.
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