
YOUR CHALLENGE: Insert 
a number from 1 to 9 in 
each cell without repeating 
any of those digits in the same 
row, column or subgrid (3×3 box). 
The solutions to the moderately 
diffi cult Sudoku in the center and to 
others in this article appear at www.sciam.
com, along with additional puzzles.
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One might expect a game of logic to appeal to very few 
people—mathematicians, maybe, computer geeks, 
compulsive gamblers. Yet in a very short time, Sudoku 
has become extraordinarily popular, bringing to mind 

the Rubik’s cube craze of the early 1980s.
Unlike the three-dimensional Rubik’s cube, a Sudoku puz-

zle is a fl at, square grid. Typically it contains 81 cells (nine 
rows and nine columns) and is divided into nine smaller 
squares containing nine cells each; call them subgrids. The 
game begins with numbers already printed in some cells. The 
player must fi ll in the empty cells with the numbers 1 to 9 in 

such a way that no digit appears twice in the same row, col-
umn or subgrid. Each puzzle has one unique solution.

Ironically, despite being a game of numbers, Sudoku 
demands not an iota of mathematics of its solvers. In 

fact, no operation—including addition or multipli-
cation—helps in completing a grid, which in theo-

ry could be fi lled with any set of nine different 
symbols (letters, colors, icons and so on). Nev-

ertheless, Sudoku presents mathematicians 
and computer scientists with a host of chal-

lenging issues.

Family Tree
one t hing is not unresolved, however: 

the game’s roots. The ancestor of Sudoku is not, 
as is commonly presumed, the magic square—an ar-

ray in which the integers in all the rows, columns and 

diagonals add up to the same sum. Indeed, aside from the 
numbers and the grid, Sudoku has almost nothing to do with 
the magic square—but everything to do with the Latin square 
[see box on next page].

A Latin square of order n is a matrix of n2 cells (n cells on 
a side), fi lled with n symbols such that the same symbol never 
appears twice in the same row or column (each of the n sym-
bols is thus used precisely n times). The origin of those grids 
dates back to the Middle Ages; later, mathematician Leon-
hard Euler (1707–1783) named them Latin squares and stud-
ied them.

A standard Sudoku is like an order-9 Latin square, differ-
ing only in its added requirement that each subgrid contain the 
numbers 1 through 9. The fi rst such puzzle appeared in the 
May 1979 edition of Dell Pencil Puzzles and Word Games 
and, according to research done by Will Shortz, the crossword 
editor of the New York Times, was apparently created by a 
retired architect named Howard Garns. Garns died in India-
napolis in 1989 (or 1981; accounts vary), too early to witness 
the global success of his invention.

The game, published by Dell as “Number Place,” jumped 
to a magazine in Japan in 1984, which ultimately named it 

“Sudoku,” loosely translated as “single numbers.” The maga-
zine trademarked that moniker, and so copycats in Japan used 
the “Number Place” name. In yet another Sudoku-related 
irony, then, the Japanese call the puzzle by its English name, 
and English speakers call it by its Japanese name.

Sudoku owes its subsequent success to Wayne Gould, a peri-

Solving a Sudoku puzzle requires no math, 
not even arithmetic. Even so, the game poses 

a number of intriguing mathematical problems

BY JEAN-PAUL DELAHAYE

SUDOKU
The Science behind 
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patetic retired judge living in Hong 
Kong, who came across it while visiting 
Japan in 1997 and wrote a computer 
program that automatically generates 
Sudoku grids. At the end of 2004 the 
London Times accepted his proposal to 
publish the puzzles, and in January 
2005 the Daily Telegraph followed suit. 
Since then, several dozen daily papers in 
countries all over the world have taken 
to printing the game, some even putting 
it on the cover page as a promotional 
come-on. Specialty magazines and en-
tire books devoted to this diversion have 
sprung up, as have tournaments, Web 
sites and blogs.

As Many Grids as Humans
i t did not ta k e long for mathe-
maticians to begin playing “how many” 
games with Sudoku. For instance, they 
soon asked how many unique fi lled-in, 
or “solution,” grids can be constructed. 
Clearly, the answer has to be smaller 
than the number of Latin squares be-
cause of the added constraints imposed 
by the subgrids.

There are only 12 Latin squares of 
order 3 and 576 of order 4, but 5,524,-
751,496,156,892,842,531,225,600 of 
order 9. Group theory, however, says 
that a grid that can be derived from an-
other is equivalent to the original. For 
instance, if I systematically replaced 
each number with some other (say, 1 be-
came 2, and 2 became 7, and so on), or 
if I swapped two rows or columns, the 
fi nal results would all be essentially the 
same. If one counts only the reduced 
forms, then the number of Latin squares 
of order 9 is 377,597,570,964,258,816 
(a result reported in Discrete Mathe-
matics in 1975 by Stanley E. Bammel 
and Jerome Rothstein, then at Ohio 
State University).

Exactly how many Sudoku grids can 
exist has been rather diffi cult to estab-
lish. Today only the use of logic (to sim-
plify the problem) and computers (to 
examine possibilities systematically) 
makes it possible to estimate the number 
of valid Sudoku solution grids: 6,670,-
903,752,021,072,936,960. That num-
ber includes all those derived from any 

particular grid by elementary opera-
tions. This result, from Bertram Felgen-
hauer of the Technical University of 
Dresden in Germany and Frazer Jarvis 
of the University of Sheffi eld in England, 
has now been verified several times. 
(Verifi cation matters for results that are 
obtained this way.)

If we count only once those grids 
that can be reduced to equivalent con-
fi gurations, then the number shrinks to 
5,472,730,538—slightly lower than the 
population of humans on the earth. De-
spite this reduction, Sudoku devotees 
need not fear any shortage of puzzles.

Note that a complete Sudoku solu-
tion grid may be arrived at in more than 
one way from any starting, or clue, grid 
(that is, an incomplete grid whose solu-
tion is a given complete version). No-
body has yet succeeded in determining 
how many different starting grids there 
are. Moreover, a Sudoku starting grid is 
really only interesting to a mathemati-
cian if it is minimal—that is, if removing 
a single number will mean the solution 
is no longer unique. No one has fi gured 
out the number of possible minimal 
grids, which would amount to the ulti-
mate count of distinct Sudoku puzzles. 
It is a challenge that is sure to be taken 
up in the near future.

Another problem of minimality also 
remains unsolved—to wit, what is the 
smallest number of digits a puzzle mak-
er can place in a starting grid and still 
guarantee a unique solution? The an-
swer seems to be 17. Gordon Royle of 

■   Sudoku is more than just an entertaining logic game for players; it also raises 
a host of deeper issues for mathematicians.

■   Such problems include: How many Sudoku grids can be constructed? What is 
the minimal number of starting clues that will yield one unique solution? Does 
Sudoku belong to the class of hard problems known as NP-complete?

■   Puzzle mavens have come up with an array of approaches to attacking 
Sudokus and with entertaining variations on the game.

Overview/Scientifi c Sudoku
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A Sudoku grid is a special kind of 
Latin square. Latin squares, which 
were so named by the 18th-
century mathematician Leonhard 
Euler, are n×n matrices that are 
fi lled with n symbols in such a way 
that the same symbol never 
appears twice in the same row or 
column. Two examples are shown. 
The standard completed Sudoku 
grid (also known as a solution 
grid) is a 9×9 Latin square that 
meets the additional constraint of 
having each of its nine subgrids 
contain the digits 1 to 9.

Small  Latin square
(n = 4)

Latin square that is also a completed 
Sudoku grid (n = 9)

SUDOKU’S PREDECESSORS
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the University of Western Australia 
has collected more than 38,000 exam-
ples that fi t this criterion and cannot 
be translated into one another by per-
forming elementary operations.

Gary McGuire of the National Uni-
versity of Ireland, Maynooth, is con-
ducting a search for a 16-clue puzzle 
with a unique solution but has so far 
come up empty-handed. It begins to 
look as if none exists. On the other 
hand, Royle and others working inde-
pendently have managed to fi nd one 16-
clue puzzle that has just two solutions. 
Searchers have not yet uncovered any 
additional examples.

Is anyone near to proving that no 
valid Sudoku puzzle can have only 16 
clues? McGuire says no. If we could an-
alyze one grid per second, looking for a 
valid 16-clue puzzle within it, he notes, 

“we could search all the grids in 173 
years. Unfortunately, we cannot yet do 
this, even on a fast computer.” Soon, he 
says, searching a grid might be doable in 
one minute on a powerful computer, but 
at that rate the endeavor would take 
10,380 years. “Even distributed on 
10,000 computers, it would take about 
one year,” he adds. “We really need a 
breakthrough in our understanding to 
make it feasible to search all the grids. 
We either need to reduce the search space 
or find a much better algorithm for 
searching.”

Mathematicians do know the solu-
tion to the opposite of the minimum 
number of clues problem: What is the 
maximum number of givens that do not 
guarantee a unique solution? The an-
swer is 77. It is very easy to see that with 
80, 79 or 78 givens, if there is a solution, 
it is unique. But the same cannot be 
guaranteed for 77 givens [see bottom 
box on page 86].

Computer Solvers
beyond t he “how m a n y” ques-
tions, mathematicians and computer sci-
entists enjoy pondering what computers 
can and cannot do when it comes to 
solving and generating Sudoku puzzles. 
For standard Sudokus (9×9), it is rela-
tively easy to write computer programs 
that solve all valid starting grids.

The solution programs can employ 
several methods, but the most common 
is backtracking, a systematic form of 
trial and error in which partial solutions 
are proposed and then modifi ed slightly 
as soon as they are proved wrong.

The basic backtracking algorithm 
works like this: The program places the 
number 1 in the fi rst empty cell. If the 
choice is compatible with the existing 
clues, it continues to the second empty 
cell, where it places a 1. When it en-

counters a confl ict (which can happen 
very quickly), it erases the 1 just placed 
and inserts 2 or, if that is invalid, 3 or 
the next legal number. After placing the 
fi rst legal number possible, it moves to 
the next cell and starts again with a 1.

If the number that has to be changed 
is a 9 (which cannot be raised by one in 
a standard Sudoku grid), the program 
backtracks and increases the number in 
the previous cell (the next-to-last num-
ber placed) by one. Then it moves for-

Another problem: What is the smallest 
number of digits that can be put in a starting 
grid and still guarantee a unique solution? 
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The minimum number of clues that a 9×9 Sudoku puzzle can start with and still 
yield a unique solution seems to be 17; an example is shown. One particular fi lled-in 
grid, known to Sudoku afi cionados as “Strangely Familiar,” or SF, hides 29 
inequivalent 17-clue starting boards—an unusually high number. SF was once 
considered the grid most likely to harbor a 16-clue puzzle with a unique solution, but 
an exhaustive search has dashed that hope. The only known 16-clue Sudoku having 
just two solutions appears at bottom; the fi nal grids interchange the 8’s and 9’s.

16-Clue Puzzle . . .

“Strangely Familiar” GridOne 17-Clue Puzzle

HOW LOW CAN YOU GO?
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ward until it hits a confl ict. (The pro-
gram sometimes backtracks several 
times before advancing.) In a well-writ-
ten program, this method exhaustively 
explores all possible hypotheses and 
thus fi nishes by fi nding the solution, if 
one exists. And if multiple solutions ex-
ist, as would be the case with a fl awed 
puzzle, the program fi nds all of them.

Of course, refi nements are possible, 
and they speed up the discovery of the 
unique solution. One favorite is called 

constraint propagation: after each new 
number is placed, the program generates 
a table of the remaining possible num-
bers in each empty cell and considers 
only numbers from this table.

Backtracking techniques can be en-
coded by fairly short solution programs. 
Indeed, concise programs have been writ-
ten for Sudoku in Prolog, a computer lan-
guage incorporating a backtracking algo-
rithm. Alain Colmerauer and Philippe 
Roussel of the University of Mar seilles in 

France invented Prolog in the late 1970s.
For human players, the backtracking 

techniques employed by computer pro-
grams would be infeasible; they would 
require extraordinary patience. So mor-
tals use more varied and smarter rules 
and generally turn to trial and error only 
as a last resort. Some programs try to 
mimic human methods to an extent: they 
are longer than the others but work just 
as well. The programs that simulate hu-
man reasoning are also useful for assess-
ing the diffi culty of starting grids, which 
are ranked from “easy” (requiring simple 
tactics) to what many call “devilish” or 

“diabolical” (because of the need to apply 
more mind-bending rules of logic).

One way computer scientists think 
about solving a Sudoku puzzle is to 
equate the task to a graph-coloring prob-

JEAN-PAUL DELAHAYE is professor of computer science at the University of Sciences and 
Technologies of Lille in France and a researcher in the Computer Science Laboratory of Lille 
(LIFL) of the National Center for Scientifi c Research (CNRS) based at the university. His 
work focuses on computational game theory (such as the iterated prisoner’s dilemma) and 
complexity theory (such as Kolmogorov complexity) and applications of these theories to 
genetic analysis and, recently, to economics. This article expands on one Delahaye pub-
lished in the December 2005 Pour la Science, the French edition of Scientifi c American. 
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Here are a few ways to try solving 
a Sudoku puzzle. Methods 1 and 2 
are the simplest and are usually 
used in tandem (a bit of one, a bit 
of the other). Unfortunately, they 
do not always get one very far, so 
a player can add in method 3 and, 
if that proves insuffi cient, 
method 4—which works every 
time but not necessarily easily. 
You can also invent methods of 
your own and try the many 
approaches described on the Web. 

SOLUTION METHODS

a b

d

5

4

1
3

7

9

3

2
6

1

4
8
5

1

8

9

5
7
2

5

7

9
1

2

9
5

7

2

4

6

7

5

4

1
3

7

9

3

2
6

1

4
8
5

1

8

9

5
7
2

5

7

9
1

2

9
5

7

2

4

6

7

5

4

1

3

7

9

3

2

6

1

4

8

5

1

8

9

5

7

2

5

7

9

1

2

9

5

7

2

4

6

7

“Only”
  cells 
  (blue)

“Forced”
  cells 
  (orange)

c

JE
N

 C
H

R
IS

TI
A

N
S

E
N

; 
S

O
U

R
C

E
: 

JE
A

N
-P

A
U

L 
D

E
L

A
H

AY
E

 

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.



w w w. s c i a m . c o m   S C I E N T I F I C  A M E R I C A N 85

lem in which two adjacent cells (other-
wise known as “two vertices joined by 
an edge”) cannot take the same color 
and the available palette has nine colors. 
The graph contains 81 vertices, some of 
which are colored at the outset. The col-
oring problem is actually quite complex 
because each 9×9 grid has hundreds of 
edges. Each cell is part of a row includ-
ing eight other cells, a column including 
eight other cells, and a subgrid including 
eight other cells (of which four have al-
ready been counted in the column or 
row). So each of the 81 cells is linked to 
20 (8 + 8 + 4) other cells, which makes a 
grand total of 1,620 cells that share one 
edge with a neighbor—which, in turn, 
means that the total number of edges is 
810 (1,620 divided by 2).

That Sudoku puzzles can be trans-

lated into a coloring problem is mean-
ingful to scientists, because that prop-
erty links Sudoku to a class of impor-
tant problems. In particular, Takayuki 
Yato and Takahiro Seta of the Univer-
sity of Tokyo have recently demonstrat-
ed that Sudoku belongs to the category 
of NP-complete problems. Such prob-
lems are ones that probably cannot be 
solved in a realistic time frame. Well-
known examples include the 3-color-
ability problem, which asks whether it 
is possible to shade each node in a graph 
with three colors in such a way that no 

two nodes joined by an edge are assigned 
the same color. In the case of Sudoku, 
the apparently impossible challenge is 
designing an efficient program that 
would solve Sudokus of all sizes—that is, 
every grid that takes the form n2×n2, 
not just the standard 32×32 (9×9) ver-
sions. No program for solving all puz-
zles would work effi ciently because the 
time required to fi nd a solution increas-
es dramatically as n gets bigger.

If you have an algorithm that solves 
classic Sudokus, you can use it to obtain 
an algorithm that designs them. Indeed, 

That Sudoku puzzles can be translated into 
a coloring problem links the game to a 
class of important mathematical problems.

SOLUTION METHODS

METHOD 1

“FORCED” CELL
This approach considers a cell to be fi xed. 
By eliminating as possibilities any other 
numbers in the same column, row and 
subgrid, you see whether only one possibility 
remains. Such analysis of grid a will reveal 
that the boxes containing orange numbers in 
grid b are “forced” cells.

METHOD 2

“ONLY” CELL
Here a given value is the focus—for example, the number 5. Columns one and three in 
grid a already have 5s, but column two so far has none. Where can that column’s 5 be? 
Not in the three fi rst cells of column two, because they sit in a subgrid that already 
has a 5. Not in the seventh cell of the column, because its subgrid, too, has a 5. 
Thus, the 5 of column two is either in the fourth, fi fth or sixth cell of the column. Only 
the fi fth cell is free, so the number goes there. The cells marked with blue numbers 
in grid b are “only” cells. 

METHOD 3 METHOD 4 

SIMPLIF YING THE RANGE OF POSSIBILITIES
This technique is extremely powerful but requires a pencil and eraser. In each cell, 
you write all possible solutions very small or use dots whose positions represent 
the numbers 1 to 9. Then you apply logic to try to eliminate options.

For example, grid c shows how grid a would look if it were marked up by rote, 
without methods 1 and 2 being applied fi rst. In the third column, the array of 
possibilities for the second, third, fourth, fi fth and sixth cells are, respectively, 
{2, 3, 6, 7}, {3, 6, 9}, {2, 6}, {2, 6} and {6, 7}. The column must contain a 2 and a 6, 
so these numbers must be in the two cells whose sole possibilities are 2 and 6 
(circled in fi rst detail). Consequently, 2 and 6 cannot be anywhere else in this 
column and can be deleted from the column’s other cells (red). The range of 
possibilities for the column is simplifi ed to {3, 7}, {3, 9}, {2, 6}, {2, 6}, {7}. But that 
isn’t all. Stipulating the position of 7 in turn dictates the positions of 3 and of 9 
(second detail). The fi nal possibilities are {3}, {9}, {2, 6}, {2, 6}, {7}. A single 
uncertainty remains: where 2 and 6 should go. 

The general rule for simplifying possibilities is the following: if, among a set of 
possibilities (for a row, column or subgrid), you fi nd m cells that contain a subset 
consisting only of m numbers (but not necessarily all of them in each cell), the 
digits in the subset can be eliminated as possibilities from the other cells in the 
larger set. For instance, in d the arrangement {2, 3}, {1, 3}, {1, 2}, {1, 2, 4, 5}, {3, 5, 7} 
can be simplifi ed to {2, 3}, {1, 3}, {1, 2}, {4, 5}, {5, 7}, because the cells {2, 3}, {1, 3}, 
{1, 2} all come from the subset {1, 2, 3} and have no other numbers.

TRIAL AND ERROR
By applying methods 1 through 3, you can solve 
many Sudoku grids. But diabolical-level Sudokus 
often require a phase of trial and error. When 
uncertainty persists, you make a random choice 
and apply all your strategies as if that were the 
correct decision. If you hit an impossibility (such 
as two identical numbers in the same column), you 
know you chose incorrectly. For instance, you 
might try 2 in the fourth cell of the third column in 
grid c. If that fails, you begin again from the same 
starting point, but this time with 6 in the box.

Unfortunately, sometimes you have to do 
several rounds of trial and error, and you have to 
be prepared to backtrack if you guess incorrectly. 
Indeed, the idea behind the trial-and-error method 
is the same as that used by backtracking 
algorithms, which computer programs can easily 
implement but which can sorely tax human brains. 
How remarkable it is that the method most 
effective for a machine is the least effective for 
a human being.
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although early Sudokus were construct-
ed by hand, today almost all are pro-
duced by computer programs based on 
the following approach or a similar one. 
Numbers are placed at random on a grid 
board, and a solution algorithm (for ex-

ample, backtracking) is applied. If the 
puzzle possesses a unique solution, the 
program stops. If the partially complet-
ed problem has no solution, one number 
is taken away from the starting arrange-
ment and the program begins again. If 

the puzzle has various solutions, one is 
chosen and the algorithm then adds as 
many numbers as needed to the starting 
clues to ensure that the chosen solution 
is unique. 

Human Strategies
fa ns w ho e njoy solving Sudokus 
manually can choose among many tac-
tics, but two basic approaches offer a 
decent starting point. First, search for 
the most constrained empty cells: those 
that belong to a row, column or subgrid 
that is already pretty well filled in. 
Sometimes eliminating impossibilities 
(the numbers already occupying cells in 
the same row, column or grid) will lead 
you to discover the only number that 
will work in a particular cell; in any 
case, the method should greatly narrow 
the options.

TOO FEW CLUES

VARIATIONS ON A THEME

In need of something more than 
standard diabolical grids? In the 
puzzles here, the usual rules apply, 
with some twists. In a, the letters in 
the words GRAND TIME replace 
numbers, and geometric shapes 
replace the square subgrids. Its 
inventor calls it a Du-Sum-Oh puzzle. 
In b, which contains six triangular 
subgrids, the rows and the slanted 
columns may be interrupted in the 
center, and when a row or column 
has only eight cells, the nearby cell 
that forms a point of the “star” 
serves as the ninth cell. In c, the 
three-place numbers formed by the 
marked rows in the fi rst two 
subgrids add up to the number in the 
third subgrid. In d, greater-than and 
less-than signs indicate where the 
digits belong. In e, the dominoes at 
the bottom need to be placed into 
the empty spaces. In f, three game 
boards overlap. Visit www.sciam.
com for solutions and more games.

77 clues are not 
necessarily enough 
to guarantee a unique 
solution. Despite 
having only four 
empty cells, the 
grid here has two 
solutions: in the 
fi rst two columns 
the missing 1’s and 
2’s (inset) are 
interchangeable.
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Second, search for where a given 
value might be found in a particular col-
umn, row or subgrid (for example, look 
for the only places where a 3 might fi t in 
row four). Sometimes the query will 
have only one possible response. Other 
times just knowing that the 3 can go 
only in two or three particular spots 
ends up being helpful. See the box on 
pages 84 and 85 for more details. Also, 
visit the Web sites listed in “More to Ex-
plore” to fi nd a host of strategies, some 
of which have such creative names as 

“swordfi sh” and “golden chain.”
A number of software programs eas-

ily found on the Internet will generate 
boards of specifi ed diffi culty and help 
you fi nd solutions (without, of course, 
solving the puzzle for you!). For exam-
ple, some allow you to put temporary 
marks in the cells and to erase them, 

thus making pencil and eraser unneces-
sary. Some even enable you to create 
links between cells. Do not overlook 
these software programs. In freeing you 
from such tedious tasks as erasing, they 
will actually spur you to greater subtle-
ty and virtuosity in this game of logic.

Once you have gotten bored with 
traditional Sudokus, you can go looking 
for the innumerable variants: some 
overlap multiple grids; others replace  

square subgrids with other structures; 
still others introduce additional con-
straints. These alternatives appeal be-
cause they compel you to explore new 
logical strategies. Moreover, devotees 
who take only a quarter of an hour to do 
a traditional puzzle can immerse them-
selves the entire day in the delights of 
combining cells and numbers in giant 
versions of Sudoku. But enough of that. 
On to the next grid!  

M O R E  T O  E X P L O R E
1st World Sudoku Championship: www.wsc2006.com/eng/index.php
Math Games. Ed Pegg, Jr.: www.maa.org/editorial/mathgames/mathgames–09–05–05.html
The Mathematics of Su Doku. Sourendu Gupta: http://theory.tifr.res.in/˜sgupta/sudoku/
Mathematics of Sudoku. Tom Davis: www.geometer.org/mathcircles
SadMan Software Sudoku techniques: www.simes.clara.co.uk/programs/sudokutechniques.htm
Sudoku, an overview: www.sudoku.com/howtosolve.htm
Sudoku, from Wikipedia: http://en.wikipedia.org/wiki/Sudoku
A Variety of Sudoku Variants: www.sudoku.com/forums/viewtopic.php?t=995
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